Files
@ bc29d573b2db
Branch filter:
Location: CSY/reowolf/src/runtime2/consensus.rs
bc29d573b2db
13.5 KiB
application/rls-services+xml
WIP on revised consensus algorithm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | use std::path::Component;
use crate::protocol::eval::ValueGroup;
use crate::runtime2::branch::{BranchId, ExecTree, QueueKind};
use crate::runtime2::ConnectorId;
use crate::runtime2::inbox2::{DataHeader, SyncHeader};
use crate::runtime2::port::{Port, PortIdLocal};
use crate::runtime2::scheduler::ComponentCtxFancy;
use super::inbox2::PortAnnotation;
struct BranchAnnotation {
port_mapping: Vec<PortAnnotation>,
}
/// The consensus algorithm. Currently only implemented to find the component
/// with the highest ID within the sync region and letting it handle all the
/// local solutions.
///
/// The type itself serves as an experiment to see how code should be organized.
// TODO: Flatten all datastructures
// TODO: Have a "branch+port position hint" in case multiple operations are
// performed on the same port to prevent repeated lookups
pub(crate) struct Consensus {
// Local component's state
highest_connector_id: ConnectorId,
branch_annotations: Vec<BranchAnnotation>,
last_finished_handled: Option<BranchId>,
// Gathered state (in case we are currently the leader of the distributed
// consensus protocol)
// Workspaces
workspace_ports: Vec<PortIdLocal>,
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub(crate) enum Consistency {
Valid,
Inconsistent,
}
impl Consensus {
pub fn new() -> Self {
return Self {
highest_connector_id: ConnectorId::new_invalid(),
branch_annotations: Vec::new(),
last_finished_handled: None,
workspace_ports: Vec::new(),
}
}
// --- Controlling sync round and branches
/// Returns whether the consensus algorithm is running in sync mode
pub fn is_in_sync(&self) -> bool {
return !self.branch_annotations.is_empty();
}
/// TODO: Remove this once multi-fire is in place
pub fn get_annotation(&self, branch_id: BranchId, port_id: PortIdLocal) -> &PortAnnotation {
let branch = &self.branch_annotations[branch_id.index as usize];
let port = branch.port_mapping.iter().find(|v| v.port_id == port_id).unwrap();
return port;
}
/// Sets up the consensus algorithm for a new synchronous round. The
/// provided ports should be the ports the component owns at the start of
/// the sync round.
pub fn start_sync(&mut self, ports: &[Port]) {
debug_assert!(self.branch_annotations.is_empty());
debug_assert!(!self.highest_connector_id.is_valid());
// We'll use the first "branch" (the non-sync one) to store our ports,
// this allows cloning if we created a new branch.
self.branch_annotations.push(BranchAnnotation{
port_mapping: ports.iter()
.map(|v| PortAnnotation{
port_id: v.self_id,
registered_id: None,
expected_firing: None,
})
.collect(),
});
}
/// Notifies the consensus algorithm that a new branch has appeared. Must be
/// called for each forked branch in the execution tree.
pub fn notify_of_new_branch(&mut self, parent_branch_id: BranchId, new_branch_id: BranchId) {
// If called correctly. Then each time we are notified the new branch's
// index is the length in `branch_annotations`.
debug_assert!(self.branch_annotations.len() == new_branch_id.index as usize);
let parent_branch_annotations = &self.branch_annotations[parent_branch_id.index as usize];
let new_branch_annotations = BranchAnnotation{
port_mapping: parent_branch_annotations.port_mapping.clone(),
};
self.branch_annotations.push(new_branch_annotations);
}
/// Notifies the consensus algorithm that a branch has reached the end of
/// the sync block. A final check for consistency will be performed that the
/// caller has to handle. Note that
pub fn notify_of_finished_branch(&self, branch_id: BranchId) -> Consistency {
debug_assert!(self.is_in_sync());
let branch = &self.branch_annotations[branch_id.index as usize];
for mapping in &branch.port_mapping {
match mapping.expected_firing {
Some(expected) => {
if expected != mapping.registered_id.is_some() {
// Inconsistent speculative state and actual state
debug_assert!(mapping.registered_id.is_none()); // because if we did fire on a silent port, we should've caught that earlier
return Consistency::Inconsistent;
}
},
None => {},
}
}
return Consistency::Valid;
}
/// Notifies the consensus algorithm that a particular branch has assumed
/// a speculative value for its port mapping.
pub fn notify_of_speculative_mapping(&mut self, branch_id: BranchId, port_id: PortIdLocal, does_fire: bool) -> Consistency {
debug_assert!(self.is_in_sync());
let branch = &mut self.branch_annotations[branch_id.index as usize];
for mapping in &mut branch.port_mapping {
if mapping.port_id == port_id {
match mapping.expected_firing {
None => {
// Not yet mapped, perform speculative mapping
mapping.expected_firing = Some(does_fire);
return Consistency::Valid;
},
Some(current) => {
// Already mapped
if current == does_fire {
return Consistency::Valid;
} else {
return Consistency::Inconsistent;
}
}
}
}
}
unreachable!("notify_of_speculative_mapping called with unowned port");
}
/// Generates sync messages for any branches that are at the end of the
/// sync block. To find these branches, they should've been put in the
/// "finished" queue in the execution tree.
pub fn handle_new_finished_sync_branches(&mut self, tree: &ExecTree, ctx: &mut ComponentCtxFancy) {
debug_assert!(self.is_in_sync());
let mut last_branch_id = self.last_finished_handled;
for branch in tree.iter_queue(QueueKind::FinishedSync, last_branch_id) {
// Turn the port mapping into a local solution
last_branch_id = Some(branch.id);
}
self.last_finished_handled = last_branch_id;
}
pub fn end_sync(&mut self, branch_id: BranchId, final_ports: &mut Vec<PortIdLocal>) {
debug_assert!(self.is_in_sync());
// TODO: Handle sending and receiving ports
final_ports.clear();
let branch = &self.branch_annotations[branch_id.index as usize];
for port in &branch.port_mapping {
final_ports.push(port.port_id);
}
}
// --- Handling messages
/// Prepares a message for sending. Caller should have made sure that
/// sending the message is consistent with the speculative state.
pub fn handle_message_to_send(&mut self, branch_id: BranchId, source_port_id: PortIdLocal, content: &ValueGroup, ctx: &mut ComponentCtxFancy) -> (SyncHeader, DataHeader) {
debug_assert!(self.is_in_sync());
let branch = &mut self.branch_annotations[branch_id.index as usize];
if cfg!(debug_assertions) {
let port = branch.port_mapping.iter()
.find(|v| v.port_id == source_port_id)
.unwrap();
debug_assert!(port.expected_firing == None || port.expected_firing == Some(true));
}
// Check for ports that are begin sent
debug_assert!(self.workspace_ports.is_empty());
find_ports_in_value_group(content, &mut self.workspace_ports);
if !self.workspace_ports.is_empty() {
todo!("handle sending ports");
self.workspace_ports.clear();
}
let sync_header = SyncHeader{
sending_component_id: ctx.id,
highest_component_id: self.highest_connector_id,
};
// TODO: Handle multiple firings. Right now we just assign the current
// branch to the `None` value because we know we can only send once.
debug_assert!(branch.port_mapping.iter().find(|v| v.port_id == source_port_id).unwrap().registered_id.is_none());
let port_info = ctx.get_port_by_id(source_port_id).unwrap();
let data_header = DataHeader{
expected_mapping: branch.port_mapping.clone(),
sending_port: port_info.peer_id,
target_port: port_info.peer_id,
new_mapping: branch_id
};
for mapping in &mut branch.port_mapping {
if mapping.port_id == source_port_id {
mapping.expected_firing = Some(true);
mapping.registered_id = Some(branch_id);
}
}
return (sync_header, data_header);
}
pub fn handle_received_sync_header(&mut self, sync_header: &SyncHeader, ctx: &mut ComponentCtxFancy) {
todo!("should check IDs and maybe send sync messages");
}
/// Checks data header and consults the stored port mapping and the
/// execution tree to see which branches may receive the data message's
/// contents.
///
/// This function is generally called for freshly received messages that
/// should be matched against previously halted branches.
pub fn handle_received_data_header(&mut self, exec_tree: &ExecTree, data_header: &DataHeader, target_ids: &mut Vec<BranchId>) {
for branch in exec_tree.iter_queue(QueueKind::AwaitingMessage, None) {
if branch.awaiting_port == data_header.target_port {
// Found a branch awaiting the message, but we need to make sure
// the mapping is correct
if self.branch_can_receive(branch.id, data_header) {
target_ids.push(branch.id);
}
}
}
}
pub fn notify_of_received_message(&mut self, branch_id: BranchId, data_header: &DataHeader, content: &ValueGroup) {
debug_assert!(self.branch_can_receive(branch_id, data_header));
let branch = &mut self.branch_annotations[branch_id.index as usize];
for mapping in &mut branch.port_mapping {
if mapping.port_id == data_header.target_port {
// Found the port in which the message should be inserted
mapping.registered_id = Some(data_header.new_mapping);
// Check for sent ports
debug_assert!(self.workspace_ports.is_empty());
find_ports_in_value_group(content, &mut self.workspace_ports);
if !self.workspace_ports.is_empty() {
todo!("handle received ports");
self.workspace_ports.clear();
}
return;
}
}
// If here, then the branch didn't actually own the port? Means the
// caller made a mistake
unreachable!("incorrect notify_of_received_message");
}
/// Matches the mapping between the branch and the data message. If they
/// match then the branch can receive the message.
pub(crate) fn branch_can_receive(&self, branch_id: BranchId, data_header: &DataHeader) -> bool {
let annotation = &self.branch_annotations[branch_id.index as usize];
for expected in &data_header.expected_mapping {
// If we own the port, then we have an entry in the
// annotation, check if the current mapping matches
for current in &annotation.port_mapping {
if expected.port_id == current.port_id {
if expected.registered_id != current.registered_id {
// IDs do not match, we cannot receive the
// message in this branch
return false;
}
}
}
}
return true;
}
}
/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortIdLocal>) {
// Helper to check a value for a port and recurse if needed.
use crate::protocol::eval::Value;
fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortIdLocal>) {
match value {
Value::Input(port_id) | Value::Output(port_id) => {
// This is an actual port
let cur_port = PortIdLocal::new(port_id.0.u32_suffix);
for prev_port in ports.iter() {
if *prev_port == cur_port {
// Already added
return;
}
}
ports.push(cur_port);
},
Value::Array(heap_pos) |
Value::Message(heap_pos) |
Value::String(heap_pos) |
Value::Struct(heap_pos) |
Value::Union(_, heap_pos) => {
// Reference to some dynamic thing which might contain ports,
// so recurse
let heap_region = &group.regions[*heap_pos as usize];
for embedded_value in heap_region {
find_port_in_value(group, embedded_value, ports);
}
},
_ => {}, // values we don't care about
}
}
// Clear the ports, then scan all the available values
ports.clear();
for value in &value_group.values {
find_port_in_value(value_group, value, ports);
}
}
|