Files
@ bdf284174817
Branch filter:
Location: CSY/reowolf/src/runtime2/scheduler.rs
bdf284174817
38.7 KiB
application/rls-services+xml
Update header in readme
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 | use std::collections::VecDeque;
use std::sync::Arc;
use std::sync::atomic::Ordering;
use crate::protocol::eval::EvalError;
use crate::runtime2::port::ChannelId;
use super::{ScheduledConnector, RuntimeInner, ConnectorId, ConnectorKey};
use super::port::{Port, PortState, PortIdLocal};
use super::native::Connector;
use super::branch::{BranchId};
use super::connector::{ConnectorPDL, ConnectorScheduling};
use super::inbox::{
Message, DataMessage,
ControlMessage, ControlContent,
SyncControlMessage, SyncControlContent,
};
// Because it contains pointers we're going to do a copy by value on this one
#[derive(Clone, Copy)]
pub(crate) struct SchedulerCtx<'a> {
pub(crate) runtime: &'a RuntimeInner
}
pub(crate) struct Scheduler {
runtime: Arc<RuntimeInner>,
scheduler_id: u32,
}
impl Scheduler {
pub fn new(runtime: Arc<RuntimeInner>, scheduler_id: u32) -> Self {
return Self{ runtime, scheduler_id };
}
pub fn run(&mut self) {
// Setup global storage and workspaces that are reused for every
// connector that we run
'thread_loop: loop {
// Retrieve a unit of work
self.debug("Waiting for work");
let connector_key = self.runtime.wait_for_work();
if connector_key.is_none() {
// We should exit
self.debug(" ... No more work, quitting");
break 'thread_loop;
}
// We have something to do
let connector_key = connector_key.unwrap();
let connector_id = connector_key.downcast();
self.debug_conn(connector_id, &format!(" ... Got work, running {}", connector_key.index));
let scheduled = self.runtime.get_component_private(&connector_key);
// Keep running until we should no longer immediately schedule the
// connector.
let mut cur_schedule = ConnectorScheduling::Immediate;
while let ConnectorScheduling::Immediate = cur_schedule {
self.handle_inbox_messages(scheduled);
// Run the main behaviour of the connector, depending on its
// current state.
if scheduled.shutting_down {
// Nothing to do. But we're stil waiting for all our pending
// control messages to be answered.
self.debug_conn(connector_id, &format!("Shutting down, {} Acks remaining", scheduled.router.num_pending_acks()));
if scheduled.router.num_pending_acks() == 0 {
// We're actually done, we can safely destroy the
// currently running connector
self.runtime.initiate_component_destruction(connector_key);
continue 'thread_loop;
} else {
cur_schedule = ConnectorScheduling::NotNow;
}
} else {
self.debug_conn(connector_id, "Running ...");
let scheduler_ctx = SchedulerCtx{ runtime: &*self.runtime };
let new_schedule = scheduled.connector.run(scheduler_ctx, &mut scheduled.ctx);
self.debug_conn(connector_id, &format!("Finished running (new scheduling is {:?})", new_schedule));
// Handle all of the output from the current run: messages to
// send and connectors to instantiate.
self.handle_changes_in_context(scheduled);
cur_schedule = new_schedule;
}
}
// If here then the connector does not require immediate execution.
// So enqueue it if requested, and otherwise put it in a sleeping
// state.
match cur_schedule {
ConnectorScheduling::Immediate => unreachable!(),
ConnectorScheduling::Later => {
// Simply queue it again later
self.runtime.push_work(connector_key);
},
ConnectorScheduling::NotNow => {
// Need to sleep, note that we are the only ones which are
// allows to set the sleeping state to `true`, and since
// we're running it must currently be `false`.
self.try_go_to_sleep(connector_key, scheduled);
},
ConnectorScheduling::Exit => {
// Prepare for exit. Set the shutdown flag and broadcast
// messages to notify peers of closing channels
scheduled.shutting_down = true;
for port in &scheduled.ctx.ports {
if port.state != PortState::Closed {
let message = scheduled.router.prepare_closing_channel(
port.self_id, port.peer_id,
connector_id
);
self.debug_conn(connector_id, &format!("Sending message to {:?} [ exit ] \n --- {:?}", port.peer_connector, message));
self.runtime.send_message_assumed_alive(port.peer_connector, Message::Control(message));
}
}
// Any messages still in the public inbox should be handled
scheduled.ctx.inbox.clear_read_messages();
while let Some(ticket) = scheduled.ctx.get_next_message_ticket_even_if_not_in_sync() {
let message = scheduled.ctx.take_message_using_ticket(ticket);
self.handle_message_while_shutting_down(message, scheduled);
}
if scheduled.router.num_pending_acks() == 0 {
// All ports (if any) already closed
self.runtime.initiate_component_destruction(connector_key);
continue 'thread_loop;
}
self.try_go_to_sleep(connector_key, scheduled);
},
}
}
}
/// Receiving messages from the public inbox and handling them or storing
/// them in the component's private inbox
fn handle_inbox_messages(&mut self, scheduled: &mut ScheduledConnector) {
let connector_id = scheduled.ctx.id;
while let Some(message) = scheduled.public.inbox.take_message() {
// Check if the message has to be rerouted because we have moved the
// target port to another component.
self.debug_conn(connector_id, &format!("Handling message\n --- {:#?}", message));
if let Some(target_port) = message.target_port() {
if let Some(other_component_id) = scheduled.router.should_reroute(target_port) {
self.debug_conn(connector_id, " ... Rerouting the message");
// We insert directly into the private inbox. Since we have
// a reroute entry the component can not yet be running.
if let Message::Control(_) = &message {
self.runtime.send_message_assumed_alive(other_component_id, message);
} else {
let key = unsafe { ConnectorKey::from_id(other_component_id) };
let component = self.runtime.get_component_private(&key);
component.ctx.inbox.insert_new(message);
}
continue;
}
match scheduled.ctx.get_port_by_id(target_port) {
Some(port_info) => {
if port_info.state == PortState::Closed {
// We're no longer supposed to receive messages
// (rerouted message arrived much later!)
continue
}
},
None => {
// Apparently we no longer have a handle to the port
continue;
}
}
}
// If here, then we should handle the message
self.debug_conn(connector_id, " ... Handling the message");
if let Message::Control(message) = &message {
match message.content {
ControlContent::PortPeerChanged(port_id, new_target_connector_id) => {
// Need to change port target
let port = scheduled.ctx.get_port_mut_by_id(port_id).unwrap();
port.peer_connector = new_target_connector_id;
// Note: for simplicity we program the scheduler to always finish
// running a connector with an empty outbox. If this ever changes
// then accepting the "port peer changed" message implies we need
// to change the recipient of the message in the outbox.
debug_assert!(scheduled.ctx.outbox.is_empty());
// And respond with an Ack
let ack_message = Message::Control(ControlMessage {
id: message.id,
sending_component_id: connector_id,
content: ControlContent::Ack,
});
self.debug_conn(connector_id, &format!("Sending message to {:?} [pp ack]\n --- {:?}", message.sending_component_id, ack_message));
self.runtime.send_message_assumed_alive(message.sending_component_id, ack_message);
},
ControlContent::CloseChannel(port_id) => {
// Mark the port as being closed
let port = scheduled.ctx.get_port_mut_by_id(port_id).unwrap();
port.state = PortState::Closed;
// Send an Ack
let ack_message = Message::Control(ControlMessage {
id: message.id,
sending_component_id: connector_id,
content: ControlContent::Ack,
});
self.debug_conn(connector_id, &format!("Sending message to {:?} [cc ack] \n --- {:?}", message.sending_component_id, ack_message));
self.runtime.send_message_assumed_alive(message.sending_component_id, ack_message);
},
ControlContent::Ack => {
if let Some(component_key) = scheduled.router.handle_ack(message.id) {
self.runtime.push_work(component_key);
};
},
ControlContent::Ping => {},
}
} else {
// Not a control message
if scheduled.shutting_down {
// Since we're shutting down, we just want to respond with a
// message saying the message did not arrive.
debug_assert!(scheduled.ctx.inbox.get_next_message_ticket().is_none()); // public inbox should be completely cleared
self.handle_message_while_shutting_down(message, scheduled);
} else {
scheduled.ctx.inbox.insert_new(message);
}
}
}
}
fn handle_message_while_shutting_down(&mut self, message: Message, scheduled: &mut ScheduledConnector) {
let target_port_and_round_number = match message {
Message::Data(msg) => Some((msg.data_header.target_port, msg.sync_header.sync_round)),
Message::SyncComp(_) => None,
Message::SyncPort(msg) => Some((msg.target_port, msg.sync_header.sync_round)),
Message::SyncControl(_) => None,
Message::Control(_) => None,
};
if let Some((target_port, sync_round)) = target_port_and_round_number {
// This message is aimed at a port, but we're shutting down, so
// notify the peer that its was not received properly.
// (also: since we're shutting down, we're not in sync mode and
// the context contains the definitive set of owned ports)
let port = scheduled.ctx.get_port_by_id(target_port).unwrap();
if port.state == PortState::Open {
let message = SyncControlMessage {
in_response_to_sync_round: sync_round,
target_component_id: port.peer_connector,
content: SyncControlContent::ChannelIsClosed(port.peer_id),
};
self.debug_conn(scheduled.ctx.id, &format!("Sending message to {:?} [shutdown]\n --- {:?}", port.peer_connector, message));
self.runtime.send_message_assumed_alive(port.peer_connector, Message::SyncControl(message));
}
}
}
/// Handles changes to the context that were made by the component. This is
/// the way (due to Rust's borrowing rules) that we bubble up changes in the
/// component's state that the scheduler needs to know about (e.g. a message
/// that the component wants to send, a port that has been added).
fn handle_changes_in_context(&mut self, scheduled: &mut ScheduledConnector) {
let connector_id = scheduled.ctx.id;
// Handling any messages that were sent
while let Some(message) = scheduled.ctx.outbox.pop_front() {
let (target_component_id, over_port) = match &message {
Message::Data(content) => {
// Data messages are always sent to a particular port, and
// may end up being rerouted.
let port_desc = scheduled.ctx.get_port_by_id(content.data_header.sending_port).unwrap();
debug_assert_eq!(port_desc.peer_id, content.data_header.target_port);
debug_assert_eq!(port_desc.state, PortState::Open); // checked when adding to context
(port_desc.peer_connector, true)
},
Message::SyncComp(content) => {
// Sync messages are always sent to a particular component,
// the sender must make sure it actually wants to send to
// the specified component (and is not using an inconsistent
// component ID associated with a port).
(content.target_component_id, false)
},
Message::SyncPort(content) => {
let port_desc = scheduled.ctx.get_port_by_id(content.source_port).unwrap();
debug_assert_eq!(port_desc.peer_id, content.target_port);
debug_assert_eq!(port_desc.state, PortState::Open); // checked when adding to context
(port_desc.peer_connector, true)
},
Message::SyncControl(_) => unreachable!("component sending 'SyncControl' messages directly"),
Message::Control(_) => unreachable!("component sending 'Control' messages directly"),
};
self.debug_conn(connector_id, &format!("Sending message to {:?} [outbox, over port: {}] \n --- {:#?}", target_component_id, over_port, message));
if over_port {
self.runtime.send_message_assumed_alive(target_component_id, message);
} else {
self.runtime.send_message_maybe_destroyed(target_component_id, message);
}
}
while let Some(state_change) = scheduled.ctx.state_changes.pop_front() {
match state_change {
ComponentStateChange::CreatedComponent(component, initial_ports) => {
// Creating a new component. Need to relinquish control of
// the ports.
let new_component_key = self.runtime.create_pdl_component(component, false);
let new_connector = self.runtime.get_component_private(&new_component_key);
// First pass: transfer ports and the associated messages,
// also count the number of ports that have peers
let mut num_peers = 0;
for port_id in initial_ports {
// Transfer messages associated with the transferred port
scheduled.ctx.inbox.transfer_messages_for_port(port_id, &mut new_connector.ctx.inbox);
// Transfer the port itself
let port_index = scheduled.ctx.ports.iter()
.position(|v| v.self_id == port_id)
.unwrap();
let port = scheduled.ctx.ports.remove(port_index);
new_connector.ctx.ports.push(port.clone());
if port.state == PortState::Open {
num_peers += 1;
}
}
if num_peers == 0 {
// No peers to notify, so just schedule the component
self.runtime.push_work(new_component_key);
} else {
// Some peers to notify
let new_component_id = new_component_key.downcast();
let control_id = scheduled.router.prepare_new_component(new_component_key);
for port in new_connector.ctx.ports.iter() {
if port.state == PortState::Closed {
continue;
}
let control_message = scheduled.router.prepare_changed_port_peer(
control_id, scheduled.ctx.id,
port.peer_connector, port.peer_id,
new_component_id, port.self_id
);
self.debug_conn(connector_id, &format!("Sending message to {:?} [newcom]\n --- {:#?}", port.peer_connector, control_message));
self.runtime.send_message_assumed_alive(port.peer_connector, Message::Control(control_message));
}
}
},
ComponentStateChange::CreatedPort(port) => {
scheduled.ctx.ports.push(port);
},
ComponentStateChange::ChangedPort(port_change) => {
if port_change.is_acquired {
scheduled.ctx.ports.push(port_change.port);
} else {
let index = scheduled.ctx.ports
.iter()
.position(|v| v.self_id == port_change.port.self_id)
.unwrap();
scheduled.ctx.ports.remove(index);
}
}
}
}
// Finally, check if we just entered or just left a sync region
if scheduled.ctx.changed_in_sync {
if scheduled.ctx.is_in_sync {
// Just entered sync region
} else {
// Just left sync region. So prepare inbox for the next sync
// round
scheduled.ctx.inbox.clear_read_messages();
}
scheduled.ctx.changed_in_sync = false; // reset flag
}
}
fn try_go_to_sleep(&self, connector_key: ConnectorKey, connector: &mut ScheduledConnector) {
debug_assert_eq!(connector_key.index, connector.ctx.id.index);
debug_assert_eq!(connector.public.sleeping.load(Ordering::Acquire), false);
// This is the running connector, and only the running connector may
// decide it wants to sleep again.
connector.public.sleeping.store(true, Ordering::Release);
// But due to reordering we might have received messages from peers who
// did not consider us sleeping. If so, then we wake ourselves again.
if !connector.public.inbox.is_empty() {
// Try to wake ourselves up (needed because someone might be trying
// the exact same atomic compare-and-swap at this point in time)
let should_wake_up_again = connector.public.sleeping
.compare_exchange(true, false, Ordering::SeqCst, Ordering::Acquire)
.is_ok();
if should_wake_up_again {
self.runtime.push_work(connector_key)
}
}
}
fn debug(&self, message: &str) {
println!("DEBUG [thrd:{:02} conn: ]: {}", self.scheduler_id, message);
}
fn debug_conn(&self, conn: ConnectorId, message: &str) {
println!("DEBUG [thrd:{:02} conn:{:02}]: {}", self.scheduler_id, conn.index, message);
}
}
// -----------------------------------------------------------------------------
// ComponentCtx
// -----------------------------------------------------------------------------
enum ComponentStateChange {
CreatedComponent(ConnectorPDL, Vec<PortIdLocal>),
CreatedPort(Port),
ChangedPort(ComponentPortChange),
}
#[derive(Clone)]
pub(crate) struct ComponentPortChange {
pub is_acquired: bool, // otherwise: released
pub port: Port,
}
/// The component context (better name may be invented). This was created
/// because part of the component's state is managed by the scheduler, and part
/// of it by the component itself. When the component starts a sync block or
/// exits a sync block the partially managed state by both component and
/// scheduler need to be exchanged.
pub(crate) struct ComponentCtx {
// Mostly managed by the scheduler
pub(crate) id: ConnectorId,
ports: Vec<Port>,
inbox: Inbox,
// Submitted by the component
is_in_sync: bool,
changed_in_sync: bool,
outbox: VecDeque<Message>,
state_changes: VecDeque<ComponentStateChange>,
// Workspaces that may be used by components to (generally) prevent
// allocations. Be a good scout and leave it empty after you've used it.
// TODO: Move to scheduler ctx, this is the wrong place
pub workspace_ports: Vec<PortIdLocal>,
pub workspace_branches: Vec<BranchId>,
}
impl ComponentCtx {
pub(crate) fn new_empty() -> Self {
return Self{
id: ConnectorId::new_invalid(),
ports: Vec::new(),
inbox: Inbox::new(),
is_in_sync: false,
changed_in_sync: false,
outbox: VecDeque::new(),
state_changes: VecDeque::new(),
workspace_ports: Vec::new(),
workspace_branches: Vec::new(),
};
}
/// Notify the runtime that the component has created a new component. May
/// only be called outside of a sync block.
pub(crate) fn push_component(&mut self, component: ConnectorPDL, initial_ports: Vec<PortIdLocal>) {
debug_assert!(!self.is_in_sync);
self.state_changes.push_back(ComponentStateChange::CreatedComponent(component, initial_ports));
}
/// Notify the runtime that the component has created a new port. May only
/// be called outside of a sync block (for ports received during a sync
/// block, pass them when calling `notify_sync_end`).
pub(crate) fn push_port(&mut self, port: Port) {
debug_assert!(!self.is_in_sync);
self.state_changes.push_back(ComponentStateChange::CreatedPort(port))
}
/// Notify the runtime of an error. Note that this will not perform any
/// special action beyond printing the error. The component is responsible
/// for waiting until it is appropriate to shut down (i.e. being outside
/// of a sync region) and returning the `Exit` scheduling code.
pub(crate) fn push_error(&mut self, error: EvalError) {
println!("ERROR: Component ({}) encountered a critical error:\n{}", self.id.index, error);
}
#[inline]
pub(crate) fn get_ports(&self) -> &[Port] {
return self.ports.as_slice();
}
pub(crate) fn get_port_by_id(&self, id: PortIdLocal) -> Option<&Port> {
return self.ports.iter().find(|v| v.self_id == id);
}
pub(crate) fn get_port_by_channel_id(&self, id: ChannelId) -> Option<&Port> {
return self.ports.iter().find(|v| v.channel_id == id);
}
fn get_port_mut_by_id(&mut self, id: PortIdLocal) -> Option<&mut Port> {
return self.ports.iter_mut().find(|v| v.self_id == id);
}
/// Notify that component will enter a sync block. Note that after calling
/// this function you must allow the scheduler to pick up the changes in the
/// context by exiting your code-executing loop, and to continue executing
/// code the next time the scheduler picks up the component.
pub(crate) fn notify_sync_start(&mut self) {
debug_assert!(!self.is_in_sync);
self.is_in_sync = true;
self.changed_in_sync = true;
}
#[inline]
pub(crate) fn is_in_sync(&self) -> bool {
return self.is_in_sync;
}
/// Submit a message for the scheduler to send to the appropriate receiver.
/// May only be called inside of a sync block.
pub(crate) fn submit_message(&mut self, contents: Message) -> Result<(), ()> {
debug_assert!(self.is_in_sync);
if let Some(port_id) = contents.source_port() {
let port_info = self.get_port_by_id(port_id);
let is_valid = match port_info {
Some(port_info) => {
port_info.state == PortState::Open
},
None => false,
};
if !is_valid {
// We don't own the port
println!(" ****** DEBUG ****** : Sending through closed port!!! {}", port_id.index);
return Err(());
}
}
self.outbox.push_back(contents);
return Ok(());
}
/// Notify that component just finished a sync block. Like
/// `notify_sync_start`: drop out of the `Component::Run` function.
pub(crate) fn notify_sync_end(&mut self, changed_ports: &[ComponentPortChange]) {
debug_assert!(self.is_in_sync);
self.is_in_sync = false;
self.changed_in_sync = true;
self.state_changes.reserve(changed_ports.len());
for changed_port in changed_ports {
self.state_changes.push_back(ComponentStateChange::ChangedPort(changed_port.clone()));
}
}
/// Retrieves messages matching a particular port and branch id. But only
/// those messages that have been previously received with
/// `read_next_message`.
pub(crate) fn get_read_data_messages(&self, match_port_id: PortIdLocal) -> MessagesIter {
return self.inbox.get_read_data_messages(match_port_id);
}
pub(crate) fn get_next_message_ticket(&mut self) -> Option<MessageTicket> {
if !self.is_in_sync { return None; }
return self.inbox.get_next_message_ticket();
}
#[inline]
pub(crate) fn get_next_message_ticket_even_if_not_in_sync(&mut self) -> Option<MessageTicket> {
return self.inbox.get_next_message_ticket();
}
#[inline]
pub(crate) fn read_message_using_ticket(&self, ticket: MessageTicket) -> &Message {
return self.inbox.read_message_using_ticket(ticket);
}
#[inline]
pub(crate) fn take_message_using_ticket(&mut self, ticket: MessageTicket) -> Message {
return self.inbox.take_message_using_ticket(ticket)
}
/// Puts back a message back into the inbox. The reason being that the
/// message is actually part of the next sync round. This will
pub(crate) fn put_back_message(&mut self, message: Message) {
self.inbox.put_back_message(message);
}
}
pub(crate) struct MessagesIter<'a> {
messages: &'a [Message],
next_index: usize,
max_index: usize,
match_port_id: PortIdLocal,
}
impl<'a> Iterator for MessagesIter<'a> {
type Item = &'a DataMessage;
fn next(&mut self) -> Option<Self::Item> {
// Loop until match is found or at end of messages
while self.next_index < self.max_index {
let message = &self.messages[self.next_index];
if let Message::Data(message) = &message {
if message.data_header.target_port == self.match_port_id {
// Found a match
self.next_index += 1;
return Some(message);
}
} else {
// Unreachable because:
// 1. We only iterate over messages that were previously retrieved by `read_next_message`.
// 2. Inbox does not contain control/ping messages.
// 3. If `read_next_message` encounters anything else than a data message, it is removed from the inbox.
unreachable!();
}
self.next_index += 1;
}
// No more messages
return None;
}
}
// -----------------------------------------------------------------------------
// Private Inbox
// -----------------------------------------------------------------------------
/// A structure that contains inbox messages. Some messages are left inside and
/// continuously re-read. Others are taken out, but may potentially be put back
/// for later reading. Later reading in this case implies that they are put back
/// for reading in the next sync round.
/// TODO: Again, lazy concurrency, see git history for other implementation
struct Inbox {
messages: Vec<Message>,
delayed: Vec<Message>,
next_read_idx: u32,
generation: u32,
}
#[derive(Clone, Copy)]
pub(crate) struct MessageTicket {
index: u32,
generation: u32,
}
impl Inbox {
fn new() -> Self {
return Inbox {
messages: Vec::new(),
delayed: Vec::new(),
next_read_idx: 0,
generation: 0,
}
}
fn insert_new(&mut self, message: Message) {
assert!(self.messages.len() < u32::MAX as usize); // TODO: @Size
self.messages.push(message);
}
fn get_next_message_ticket(&mut self) -> Option<MessageTicket> {
if self.next_read_idx as usize >= self.messages.len() { return None };
let idx = self.next_read_idx;
self.generation += 1;
self.next_read_idx += 1;
return Some(MessageTicket{ index: idx, generation: self.generation });
}
fn read_message_using_ticket(&self, ticket: MessageTicket) -> &Message {
debug_assert_eq!(self.generation, ticket.generation);
return &self.messages[ticket.index as usize];
}
fn take_message_using_ticket(&mut self, ticket: MessageTicket) -> Message {
debug_assert_eq!(self.generation, ticket.generation);
debug_assert!(ticket.index < self.next_read_idx);
self.next_read_idx -= 1;
return self.messages.remove(ticket.index as usize);
}
fn put_back_message(&mut self, message: Message) {
// We have space in front of the array because we've taken out a message
// before.
self.delayed.push(message);
}
fn get_read_data_messages(&self, match_port_id: PortIdLocal) -> MessagesIter {
return MessagesIter{
messages: self.messages.as_slice(),
next_index: 0,
max_index: self.next_read_idx as usize,
match_port_id
};
}
fn clear_read_messages(&mut self) {
self.messages.drain(0..self.next_read_idx as usize);
for (idx, v) in self.delayed.drain(..).enumerate() {
self.messages.insert(idx, v);
}
self.next_read_idx = 0;
}
fn transfer_messages_for_port(&mut self, port: PortIdLocal, new_inbox: &mut Inbox) {
debug_assert!(self.delayed.is_empty());
let mut idx = 0;
while idx < self.messages.len() {
let msg = &self.messages[idx];
if let Some(target) = msg.target_port() {
if target == port {
new_inbox.messages.push(self.messages.remove(idx));
continue;
}
}
idx += 1;
}
}
}
// -----------------------------------------------------------------------------
// Control messages
// -----------------------------------------------------------------------------
struct ControlEntry {
id: u32,
variant: ControlVariant,
}
enum ControlVariant {
NewComponent(ControlNewComponent),
ChangedPort(ControlChangedPort),
ClosedChannel(ControlClosedChannel),
}
impl ControlVariant {
fn as_new_component_mut(&mut self) -> &mut ControlNewComponent {
match self {
ControlVariant::NewComponent(v) => v,
_ => unreachable!(),
}
}
}
/// Entry for a new component waiting for execution after all of its peers have
/// confirmed the `ControlChangedPort` messages.
struct ControlNewComponent {
num_acks_pending: u32, // if it hits 0, we schedule the component
component_key: ConnectorKey, // this is the component we schedule
}
struct ControlChangedPort {
reroute_if_sent_to_this_port: PortIdLocal, // if sent to this port, then reroute
source_connector: ConnectorId, // connector we expect messages from
target_connector: ConnectorId, // connector we need to reroute to
new_component_entry_id: u32, // if Ack'd, we reduce the counter on this `ControlNewComponent` entry
}
struct ControlClosedChannel {
source_port: PortIdLocal,
target_port: PortIdLocal,
}
pub(crate) struct ControlMessageHandler {
id_counter: u32,
active: Vec<ControlEntry>,
}
impl ControlMessageHandler {
pub fn new() -> Self {
ControlMessageHandler {
id_counter: 0,
active: Vec::new(),
}
}
/// Prepares a message indicating that a channel has closed, we keep a local
/// entry to match against the (hopefully) returned `Ack` message.
pub fn prepare_closing_channel(
&mut self, self_port_id: PortIdLocal, peer_port_id: PortIdLocal,
self_connector_id: ConnectorId
) -> ControlMessage {
let id = self.take_id();
self.active.push(ControlEntry{
id,
variant: ControlVariant::ClosedChannel(ControlClosedChannel{
source_port: self_port_id,
target_port: peer_port_id,
}),
});
return ControlMessage {
id,
sending_component_id: self_connector_id,
content: ControlContent::CloseChannel(peer_port_id),
};
}
/// Prepares a control entry for a new component. This returns the id of
/// the entry for calls to `prepare_changed_port_peer`. Don't call this
/// function if the component has no peers that need to be messaged.
pub fn prepare_new_component(&mut self, component_key: ConnectorKey) -> u32 {
let id = self.take_id();
self.active.push(ControlEntry{
id,
variant: ControlVariant::NewComponent(ControlNewComponent{
num_acks_pending: 0,
component_key,
}),
});
return id;
}
pub fn prepare_changed_port_peer(
&mut self, new_component_entry_id: u32, creating_component_id: ConnectorId,
changed_component_id: ConnectorId, changed_port_id: PortIdLocal,
new_target_component_id: ConnectorId, new_target_port_id: PortIdLocal
) -> ControlMessage {
// Add the peer-changed entry
let change_port_entry_id = self.take_id();
self.active.push(ControlEntry{
id: change_port_entry_id,
variant: ControlVariant::ChangedPort(ControlChangedPort{
reroute_if_sent_to_this_port: new_target_port_id,
source_connector: changed_component_id,
target_connector: new_target_component_id,
new_component_entry_id,
})
});
// Increment counter on "new component" entry
let position = self.position(new_component_entry_id).unwrap();
let new_component_entry = &mut self.active[position];
let new_component_entry = new_component_entry.variant.as_new_component_mut();
new_component_entry.num_acks_pending += 1;
return ControlMessage{
id: change_port_entry_id,
sending_component_id: creating_component_id,
content: ControlContent::PortPeerChanged(changed_port_id, new_target_component_id),
};
}
/// Returns true if the supplied message should be rerouted. If so then this
/// function returns the connector that should retrieve this message.
pub fn should_reroute(&self, target_port: PortIdLocal) -> Option<ConnectorId> {
for entry in &self.active {
if let ControlVariant::ChangedPort(entry) = &entry.variant {
if entry.reroute_if_sent_to_this_port == target_port {
// Need to reroute this message
return Some(entry.target_connector);
}
}
}
return None;
}
/// Handles an Ack as an answer to a previously sent control message.
/// Handling an Ack might spawn a new message that needs to be sent.
pub fn handle_ack(&mut self, id: u32) -> Option<ConnectorKey> {
let index = self.position(id);
match index {
Some(index) => {
// Remove the entry. If `ChangedPort`, then retrieve associated
// `NewComponent`. Otherwise: early exits
let removed_entry = self.active.remove(index);
let new_component_idx = match removed_entry.variant {
ControlVariant::ChangedPort(message) => {
self.position(message.new_component_entry_id).unwrap()
},
_ => return None,
};
// Decrement counter, if 0, then schedule component
let new_component_entry = self.active[new_component_idx].variant.as_new_component_mut();
new_component_entry.num_acks_pending -= 1;
if new_component_entry.num_acks_pending != 0 {
return None;
}
// Return component key for scheduling
let new_component_entry = self.active.remove(new_component_idx);
let new_component_entry = match new_component_entry.variant {
ControlVariant::NewComponent(entry) => entry,
_ => unreachable!(),
};
return Some(new_component_entry.component_key);
},
None => {
todo!("handling of nefarious ACKs");
return None;
},
}
}
/// Retrieves the number of responses we still expect to receive from our
/// peers
#[inline]
pub fn num_pending_acks(&self) -> usize {
return self.active.len();
}
fn take_id(&mut self) -> u32 {
let generated_id = self.id_counter;
let (new_id, _) = self.id_counter.overflowing_add(1);
self.id_counter = new_id;
return generated_id;
}
#[inline]
fn position(&self, id: u32) -> Option<usize> {
return self.active.iter().position(|v| v.id == id);
}
}
|