Files @ c1b2442f23b2
Branch filter:

Location: CSY/reowolf/src/runtime/consensus.rs

c1b2442f23b2 66.1 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
Remove references to old runtime and stale code
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
use crate::collections::VecSet;

use crate::protocol::eval::ValueGroup;

use super::ConnectorId;
use super::branch::BranchId;
use super::port::{ChannelId, PortIdLocal, PortState};
use super::inbox::{
    Message, DataHeader, SyncHeader, ChannelAnnotation, BranchMarker,
    DataMessage,
    SyncCompMessage, SyncCompContent,
    SyncPortMessage, SyncPortContent,
    SyncControlMessage, SyncControlContent
};
use super::scheduler::{ComponentCtx, ComponentPortChange, MessageTicket};

struct BranchAnnotation {
    channel_mapping: Vec<ChannelAnnotation>,
    cur_marker: BranchMarker,
}

#[derive(Debug)]
pub(crate) struct LocalSolution {
    component: ConnectorId,
    final_branch_id: BranchId,
    sync_round_number: u32,
    port_mapping: Vec<(ChannelId, BranchMarker)>,
}

#[derive(Debug, Clone)]
pub(crate) struct GlobalSolution {
    component_branches: Vec<(ConnectorId, BranchId, u32)>,
    channel_mapping: Vec<(ChannelId, BranchMarker)>, // TODO: This can go, is debugging info
}

#[derive(Debug, PartialEq, Eq)]
pub enum RoundConclusion {
    Failure,
    Success(BranchId),
}

// -----------------------------------------------------------------------------
// Consensus
// -----------------------------------------------------------------------------

#[derive(Debug)]
struct Peer {
    id: ConnectorId,
    encountered_this_round: bool,
    expected_sync_round: u32,
}

/// The consensus algorithm. Currently only implemented to find the component
/// with the highest ID within the sync region and letting it handle all the
/// local solutions.
///
/// The type itself serves as an experiment to see how code should be organized.
// TODO: Flatten all datastructures
// TODO: Have a "branch+port position hint" in case multiple operations are
//  performed on the same port to prevent repeated lookups
// TODO: A lot of stuff should be batched. Like checking all the sync headers
//  and sending "I have a higher ID" messages. Should reduce locking by quite a
//  bit.
// TODO: Needs a refactor. Firstly we have cases where we don't have a branch ID
//  but we do want to enumerate all current ports. So put that somewhere in a
//  central place. Secondly. Error handling and regular message handling is
//  becoming a mess.
pub(crate) struct Consensus {
    // --- State that is cleared after each round
    // Local component's state
    highest_connector_id: ConnectorId,
    branch_annotations: Vec<BranchAnnotation>, // index is branch ID
    branch_markers: Vec<BranchId>, // index is branch marker, maps to branch
    // Gathered state from communication
    encountered_ports: VecSet<PortIdLocal>, // to determine if we should send "port remains silent" messages.
    solution_combiner: SolutionCombiner,
    handled_wave: bool, // encountered notification wave in this round
    conclusion: Option<RoundConclusion>,
    ack_remaining: u32,
    // --- Persistent state
    peers: Vec<Peer>,
    sync_round: u32,
    // --- Workspaces
    workspace_ports: Vec<PortIdLocal>,
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum Consistency {
    Valid,
    Inconsistent,
}

#[derive(Debug, PartialEq, Eq)]
pub(crate) enum MessageOrigin {
    Past,
    Present,
    Future
}

impl Consensus {
    pub fn new() -> Self {
        return Self {
            highest_connector_id: ConnectorId::new_invalid(),
            branch_annotations: Vec::new(),
            branch_markers: Vec::new(),
            encountered_ports: VecSet::new(),
            solution_combiner: SolutionCombiner::new(),
            handled_wave: false,
            conclusion: None,
            ack_remaining: 0,
            peers: Vec::new(),
            sync_round: 0,
            workspace_ports: Vec::new(),
        }
    }

    // --- Controlling sync round and branches

    /// Returns whether the consensus algorithm is running in sync mode
    pub fn is_in_sync(&self) -> bool {
        return !self.branch_annotations.is_empty();
    }

    #[deprecated]
    pub fn get_annotation(&self, branch_id: BranchId, channel_id: PortIdLocal) -> &ChannelAnnotation {
        let branch = &self.branch_annotations[branch_id.index as usize];
        let port = branch.channel_mapping.iter().find(|v| v.channel_id.index == channel_id.index).unwrap();
        return port;
    }

    /// Sets up the consensus algorithm for a new synchronous round. The
    /// provided ports should be the ports the component owns at the start of
    /// the sync round.
    pub fn start_sync(&mut self, ctx: &ComponentCtx) {
        debug_assert!(!self.highest_connector_id.is_valid());
        debug_assert!(self.branch_annotations.is_empty());
        debug_assert!(self.solution_combiner.local.is_empty());

        // We'll use the first "branch" (the non-sync one) to store our ports,
        // this allows cloning if we created a new branch.
        self.branch_annotations.push(BranchAnnotation{
            channel_mapping: ctx.get_ports().iter()
                .map(|v| ChannelAnnotation {
                    channel_id: v.channel_id,
                    registered_id: None,
                    expected_firing: None,
                })
                .collect(),
            cur_marker: BranchMarker::new_invalid(),
        });
        self.branch_markers.push(BranchId::new_invalid());

        self.highest_connector_id = ctx.id;

    }

    /// Notifies the consensus algorithm that a new branch has appeared. Must be
    /// called for each forked branch in the execution tree.
    pub fn notify_of_new_branch(&mut self, parent_branch_id: BranchId, new_branch_id: BranchId) {
        // If called correctly. Then each time we are notified the new branch's
        // index is the length in `branch_annotations`.
        debug_assert!(self.branch_annotations.len() == new_branch_id.index as usize);
        let parent_branch_annotations = &self.branch_annotations[parent_branch_id.index as usize];
        let new_marker = BranchMarker::new(self.branch_markers.len() as u32);
        let new_branch_annotations = BranchAnnotation{
            channel_mapping: parent_branch_annotations.channel_mapping.clone(),
            cur_marker: new_marker,
        };
        self.branch_annotations.push(new_branch_annotations);
        self.branch_markers.push(new_branch_id);
    }

    /// Notifies the consensus algorithm that a particular branch has
    /// encountered an unrecoverable error.
    pub fn notify_of_fatal_branch(&mut self, failed_branch_id: BranchId, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
        debug_assert!(self.is_in_sync());

        // Check for trivial case, where branch has not yet communicated within
        // the consensus algorithm
        let branch = &self.branch_annotations[failed_branch_id.index as usize];
        if branch.channel_mapping.iter().all(|v| v.registered_id.is_none()) {
            println!("DEBUG: Failure everything silent");
            return Some(RoundConclusion::Failure);
        }

        // We're not in the trivial case: since we've communicated we need to
        // let everyone know that this round is probably not going to end well.
        return self.initiate_sync_failure(ctx);
    }

    /// Notifies the consensus algorithm that a branch has reached the end of
    /// the sync block. A final check for consistency will be performed that the
    /// caller has to handle. Note that
    pub fn notify_of_finished_branch(&self, branch_id: BranchId) -> Consistency {
        debug_assert!(self.is_in_sync());
        let branch = &self.branch_annotations[branch_id.index as usize];
        for mapping in &branch.channel_mapping {
            match mapping.expected_firing {
                Some(expected) => {
                    if expected != mapping.registered_id.is_some() {
                        // Inconsistent speculative state and actual state
                        debug_assert!(mapping.registered_id.is_none()); // because if we did fire on a silent port, we should've caught that earlier
                        return Consistency::Inconsistent;
                    }
                },
                None => {},
            }
        }

        return Consistency::Valid;
    }

    /// Notifies the consensus algorithm that a particular branch has assumed
    /// a speculative value for its port mapping.
    pub fn notify_of_speculative_mapping(&mut self, branch_id: BranchId, port_id: PortIdLocal, does_fire: bool, ctx: &ComponentCtx) -> Consistency {
        debug_assert!(self.is_in_sync());

        let port_desc = ctx.get_port_by_id(port_id).unwrap();
        let channel_id = port_desc.channel_id;
        let branch = &mut self.branch_annotations[branch_id.index as usize];
        for mapping in &mut branch.channel_mapping {
            if mapping.channel_id == channel_id {
                match mapping.expected_firing {
                    None => {
                        // Not yet mapped, perform speculative mapping
                        mapping.expected_firing = Some(does_fire);
                        return Consistency::Valid;
                    },
                    Some(current) => {
                        // Already mapped
                        if current == does_fire {
                            return Consistency::Valid;
                        } else {
                            return Consistency::Inconsistent;
                        }
                    }
                }
            }
        }

        unreachable!("notify_of_speculative_mapping called with unowned port");
    }

    /// Generates a new local solution from a finished branch. If the component
    /// is not the leader of the sync region then it will be sent to the
    /// appropriate component. If it is the leader then there is a chance that
    /// this solution completes a global solution. In that case the solution
    /// branch ID will be returned.
    pub(crate) fn handle_new_finished_sync_branch(&mut self, branch_id: BranchId, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
        // Turn the port mapping into a local solution
        let source_mapping = &self.branch_annotations[branch_id.index as usize].channel_mapping;
        let mut target_mapping = Vec::with_capacity(source_mapping.len());

        for port in source_mapping {
            // Note: if the port is silent, and we've never communicated
            // over the port, then we need to do so now, to let the peer
            // component know about our sync leader state.
            let port_desc = ctx.get_port_by_channel_id(port.channel_id).unwrap();
            let self_port_id = port_desc.self_id;
            let peer_port_id = port_desc.peer_id;
            let channel_id = port_desc.channel_id;

            if !self.encountered_ports.contains(&self_port_id) {
                let message = SyncPortMessage {
                    sync_header: SyncHeader{
                        sending_component_id: ctx.id,
                        highest_component_id: self.highest_connector_id,
                        sync_round: self.sync_round
                    },
                    source_port: self_port_id,
                    target_port: peer_port_id,
                    content: SyncPortContent::SilentPortNotification,
                };
                match ctx.submit_message(Message::SyncPort(message)) {
                    Ok(_) => {
                        self.encountered_ports.push(self_port_id);
                    },
                    Err(_) => {
                        // Seems like we were done with this branch, but one of
                        // the silent ports (in scope) is actually closed
                        return self.notify_of_fatal_branch(branch_id, ctx);
                    }
                }
            }

            target_mapping.push((
                channel_id,
                port.registered_id.unwrap_or(BranchMarker::new_invalid())
            ));
        }

        let local_solution = LocalSolution{
            component: ctx.id,
            sync_round_number: self.sync_round,
            final_branch_id: branch_id,
            port_mapping: target_mapping,
        };
        let maybe_conclusion = self.send_to_leader_or_handle_as_leader(SyncCompContent::LocalSolution(local_solution), ctx);
        return maybe_conclusion;
    }

    /// Notifies the consensus algorithm about the chosen branch to commit to
    /// memory (may be the invalid "start" branch)
    pub fn end_sync(&mut self, branch_id: BranchId, final_ports: &mut Vec<ComponentPortChange>) {
        debug_assert!(self.is_in_sync());

        // TODO: Handle sending and receiving ports
        // Set final ports
        let branch = &self.branch_annotations[branch_id.index as usize];

        // Clear out internal storage to defaults
        println!("DEBUG: ***** Incrementing sync round stuff");
        self.highest_connector_id = ConnectorId::new_invalid();
        self.branch_annotations.clear();
        self.branch_markers.clear();
        self.encountered_ports.clear();
        self.solution_combiner.clear();
        self.handled_wave = false;
        self.conclusion = None;
        self.ack_remaining = 0;

        // And modify persistent storage
        self.sync_round += 1;

        for peer in self.peers.iter_mut() {
            peer.encountered_this_round = false;
            peer.expected_sync_round += 1;
        }

        println!("DEBUG: ***** Peers post round are:\n{:#?}", &self.peers)
    }

    // --- Handling messages

    /// Prepares a message for sending. Caller should have made sure that
    /// sending the message is consistent with the speculative state.
    pub fn handle_message_to_send(&mut self, branch_id: BranchId, source_port_id: PortIdLocal, content: &ValueGroup, ctx: &mut ComponentCtx) -> (SyncHeader, DataHeader) {
        debug_assert!(self.is_in_sync());
        let branch = &mut self.branch_annotations[branch_id.index as usize];
        let port_info = ctx.get_port_by_id(source_port_id).unwrap();

        if cfg!(debug_assertions) {
            // Check for consistent mapping
            let port = branch.channel_mapping.iter()
                .find(|v| v.channel_id == port_info.channel_id)
                .unwrap();
            debug_assert!(port.expected_firing == None || port.expected_firing == Some(true));
        }

        // Check for ports that are being sent
        debug_assert!(self.workspace_ports.is_empty());
        find_ports_in_value_group(content, &mut self.workspace_ports);
        if !self.workspace_ports.is_empty() {
            todo!("handle sending ports");
            self.workspace_ports.clear();
        }

        // Construct data header
        let data_header = DataHeader{
            expected_mapping: branch.channel_mapping.iter()
                .filter(|v| v.registered_id.is_some() || v.channel_id == port_info.channel_id)
                .copied()
                .collect(),
            sending_port: port_info.self_id,
            target_port: port_info.peer_id,
            new_mapping: branch.cur_marker,
        };

        // Update port mapping
        for mapping in &mut branch.channel_mapping {
            if mapping.channel_id == port_info.channel_id {
                mapping.expected_firing = Some(true);
                mapping.registered_id = Some(branch.cur_marker);
            }
        }

        // Update branch marker
        let new_marker = BranchMarker::new(self.branch_markers.len() as u32);
        branch.cur_marker = new_marker;
        self.branch_markers.push(branch_id);

        self.encountered_ports.push(source_port_id);

        return (self.create_sync_header(ctx), data_header);
    }

    /// Handles a new data message by handling the sync header. The caller is
    /// responsible for checking for branches that might be able to receive
    /// the message.
    pub fn handle_new_data_message(&mut self, ticket: MessageTicket, ctx: &mut ComponentCtx) -> bool {
        let message = ctx.read_message_using_ticket(ticket).as_data();
        let target_port = message.data_header.target_port;
        match self.handle_received_sync_header(message.sync_header, ctx) {
            MessageOrigin::Past => return false,
            MessageOrigin::Present => {
                self.encountered_ports.push(target_port);
                return true;
            },
            MessageOrigin::Future => {
                let message = ctx.take_message_using_ticket(ticket);
                ctx.put_back_message(message);
                return false;
            }
        }
    }

    /// Handles a new sync message by handling the sync header and the contents
    /// of the message. Returns `Some` with the branch ID of the global solution
    /// if the sync solution has been found.
    pub fn handle_new_sync_comp_message(&mut self, message: SyncCompMessage, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
        match self.handle_received_sync_header(message.sync_header, ctx) {
            MessageOrigin::Past => return None,
            MessageOrigin::Present => {},
            MessageOrigin::Future => {
                ctx.put_back_message(Message::SyncComp(message));
                return None
            }
        }

        // And handle the contents
        debug_assert_eq!(message.target_component_id, ctx.id);

        match &message.content {
            SyncCompContent::LocalFailure |
            SyncCompContent::LocalSolution(_) |
            SyncCompContent::PartialSolution(_) |
            SyncCompContent::AckFailure |
            SyncCompContent::Presence(_) => {
                // Needs to be handled by the leader
                return self.send_to_leader_or_handle_as_leader(message.content, ctx);
            },
            SyncCompContent::GlobalSolution(solution) => {
                // Found a global solution
                debug_assert_ne!(self.highest_connector_id, ctx.id); // not the leader
                let (_, branch_id, _) = solution.component_branches.iter()
                    .find(|(component_id, _, _)| *component_id == ctx.id)
                    .unwrap();
                return Some(RoundConclusion::Success(*branch_id));
            },
            SyncCompContent::GlobalFailure => {
                // Global failure of round, send Ack to leader
                println!("DEBUGERINO: Got GlobalFailure, sending Ack in response");
                debug_assert_ne!(self.highest_connector_id, ctx.id); // not the leader
                let _result = self.send_to_leader_or_handle_as_leader(SyncCompContent::AckFailure, ctx);
                debug_assert!(_result.is_none());
                return Some(RoundConclusion::Failure);
            },
            SyncCompContent::Notification => {
                // We were just interested in the sync header we handled above
                return None;
            }
        }
    }

    pub fn handle_new_sync_port_message(&mut self, message: SyncPortMessage, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
        match self.handle_received_sync_header(message.sync_header, ctx) {
            MessageOrigin::Past => return None,
            MessageOrigin::Present => {},
            MessageOrigin::Future => {
                ctx.put_back_message(Message::SyncPort(message));
                return None;
            }
        }

        debug_assert!(self.is_in_sync());
        debug_assert!(ctx.get_port_by_id(message.target_port).is_some());
        match message.content {
            SyncPortContent::SilentPortNotification => {
                // The point here is to let us become part of the sync round and
                // take note of the leader in case all of our ports are silent.
                self.encountered_ports.push(message.target_port);
                return None
            }
            SyncPortContent::NotificationWave => {
                // Wave to discover everyone in the network, handling sync
                // header takes care of leader discovery, here we need to make
                // sure we propagate the wave
                if self.handled_wave {
                    return None;
                }

                self.handled_wave = true;

                // Propagate wave to all peers except the one that has sent us
                // the wave.
                for mapping in &self.branch_annotations[0].channel_mapping {
                    let channel_id = mapping.channel_id;
                    let port_desc = ctx.get_port_by_channel_id(channel_id).unwrap();
                    if port_desc.self_id == message.target_port {
                        // Wave came from this port, no need to send one back
                        continue;
                    }

                    let message = SyncPortMessage{
                        sync_header: self.create_sync_header(ctx),
                        source_port: port_desc.self_id,
                        target_port: port_desc.peer_id,
                        content: SyncPortContent::NotificationWave,
                    };
                    // As with the other SyncPort where we throw away the
                    // result: we're dealing with an error here anyway
                    let _unused = ctx.submit_message(Message::SyncPort(message));
                }

                // And let the leader know about our port state
                let annotations = &self.branch_annotations[0];
                let mut channels = Vec::with_capacity(annotations.channel_mapping.len());
                for mapping in &annotations.channel_mapping {
                    let port_info = ctx.get_port_by_channel_id(mapping.channel_id).unwrap();
                    channels.push(LocalChannelPresence{
                        channel_id: mapping.channel_id,
                        is_closed: port_info.state == PortState::Closed,
                    });
                }

                let maybe_conclusion = self.send_to_leader_or_handle_as_leader(SyncCompContent::Presence(ComponentPresence{
                    component_id: ctx.id,
                    channels,
                }), ctx);
                return maybe_conclusion;
            }
        }
    }

    pub fn handle_new_sync_control_message(&mut self, message: SyncControlMessage, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
        if message.in_response_to_sync_round < self.sync_round {
            // Old message
            return None
        }

        // Because the message is always sent in response to a message
        // originating here, the sync round number can never be larger than the
        // currently stored one.
        debug_assert_eq!(message.in_response_to_sync_round, self.sync_round);
        match message.content {
            SyncControlContent::ChannelIsClosed(_) => {
                return self.initiate_sync_failure(ctx);
            }
        }
    }

    pub fn notify_of_received_message(&mut self, branch_id: BranchId, message: &DataMessage, ctx: &ComponentCtx) {
        debug_assert!(self.branch_can_receive(branch_id, message));

        let target_port = ctx.get_port_by_id(message.data_header.target_port).unwrap();
        let branch = &mut self.branch_annotations[branch_id.index as usize];
        for mapping in &mut branch.channel_mapping {
            if mapping.channel_id == target_port.channel_id {
                // Found the port in which the message should be inserted
                mapping.registered_id = Some(message.data_header.new_mapping);

                // Check for sent ports
                debug_assert!(self.workspace_ports.is_empty());
                find_ports_in_value_group(&message.content, &mut self.workspace_ports);
                if !self.workspace_ports.is_empty() {
                    todo!("handle received ports");
                    self.workspace_ports.clear();
                }

                return;
            }
        }

        // If here, then the branch didn't actually own the port? Means the
        // caller made a mistake
        unreachable!("incorrect notify_of_received_message");
    }

    /// Matches the mapping between the branch and the data message. If they
    /// match then the branch can receive the message.
    pub fn branch_can_receive(&self, branch_id: BranchId, message: &DataMessage) -> bool {
        if let Some(peer) = self.peers.iter().find(|v| v.id == message.sync_header.sending_component_id) {
            if message.sync_header.sync_round < peer.expected_sync_round {
                return false;
            }
        }

        let annotation = &self.branch_annotations[branch_id.index as usize];
        for expected in &message.data_header.expected_mapping {
            // If we own the port, then we have an entry in the
            // annotation, check if the current mapping matches
            for current in &annotation.channel_mapping {
                if expected.channel_id == current.channel_id {
                    if expected.registered_id != current.registered_id {
                        // IDs do not match, we cannot receive the
                        // message in this branch
                        return false;
                    }
                }
            }
        }

        return true;
    }

    // --- Internal helpers

    fn handle_received_sync_header(&mut self, sync_header: SyncHeader, ctx: &mut ComponentCtx) -> MessageOrigin {
        debug_assert!(sync_header.sending_component_id != ctx.id); // not sending to ourselves
        let origin = self.handle_peer(&sync_header);
        println!(" ********************** GOT {:?}", origin);
        if origin != MessageOrigin::Present {
            // We do not have to handle it now
            return origin;
        }

        if sync_header.highest_component_id > self.highest_connector_id {
            // Sender has higher component ID. So should be the target of our
            // messages. We should also let all of our peers know
            self.highest_connector_id = sync_header.highest_component_id;
            for peer in self.peers.iter() {
                if peer.id == sync_header.sending_component_id || !peer.encountered_this_round {
                    // Don't need to send it to this one
                    continue
                }

                let message = SyncCompMessage {
                    sync_header: self.create_sync_header(ctx),
                    target_component_id: peer.id,
                    content: SyncCompContent::Notification,
                };
                ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
            }

            // But also send our locally combined solution
            self.forward_local_data_to_new_leader(ctx);
        } else if sync_header.highest_component_id < self.highest_connector_id {
            // Sender has lower leader ID, so it should know about our higher
            // one.
            let message = SyncCompMessage {
                sync_header: self.create_sync_header(ctx),
                target_component_id: sync_header.sending_component_id,
                content: SyncCompContent::Notification
            };
            ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
        } // else: exactly equal, so do nothing

        return MessageOrigin::Present;
    }

    /// Handles a (potentially new) peer. Returns `false` if the provided sync
    /// number is different then the expected one.
    fn handle_peer(&mut self, sync_header: &SyncHeader) -> MessageOrigin {
        let position = self.peers.iter().position(|v| v.id == sync_header.sending_component_id);
        match position {
            Some(index) => {
                let entry = &mut self.peers[index];
                if entry.encountered_this_round {
                    // Already encountered this round
                    if sync_header.sync_round < entry.expected_sync_round {
                        return MessageOrigin::Past;
                    } else if sync_header.sync_round == entry.expected_sync_round {
                        return MessageOrigin::Present;
                    } else {
                        return MessageOrigin::Future;
                    }
                } else {
                    // TODO: Proper handling of potential overflow
                    entry.encountered_this_round = true;

                    if sync_header.sync_round >= entry.expected_sync_round {
                        entry.expected_sync_round = sync_header.sync_round;
                        return MessageOrigin::Present;
                    } else {
                        return MessageOrigin::Past;
                    }
                }
            },
            None => {
                self.peers.push(Peer{
                    id: sync_header.sending_component_id,
                    encountered_this_round: true,
                    expected_sync_round: sync_header.sync_round,
                });
                return MessageOrigin::Present;
            }
        }
    }

    /// Sends a message towards the leader, if already the leader then the
    /// message will be handled immediately.
    fn send_to_leader_or_handle_as_leader(&mut self, content: SyncCompContent, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
        if self.highest_connector_id == ctx.id {
            // We are the leader
            match content {
                SyncCompContent::LocalFailure => {
                    if self.solution_combiner.mark_failure_and_check_for_global_failure() {
                        return self.handle_global_failure_as_leader(ctx);
                    }
                },
                SyncCompContent::LocalSolution(local_solution) => {
                    if let Some(global_solution) = self.solution_combiner.add_solution_and_check_for_global_solution(local_solution) {
                        return self.handle_global_solution_as_leader(global_solution, ctx);
                    }
                },
                SyncCompContent::PartialSolution(partial_solution) => {
                    if let Some(conclusion) = self.solution_combiner.combine(partial_solution) {
                        match conclusion {
                            LeaderConclusion::Solution(global_solution) => {
                                return self.handle_global_solution_as_leader(global_solution, ctx);
                            },
                            LeaderConclusion::Failure => {
                                return self.handle_global_failure_as_leader(ctx);
                            }
                        }
                    }
                },
                SyncCompContent::Presence(component_presence) => {
                    if self.solution_combiner.add_presence_and_check_for_global_failure(component_presence.component_id, &component_presence.channels) {
                        return self.handle_global_failure_as_leader(ctx);
                    }
                },
                SyncCompContent::AckFailure => {
                    debug_assert_eq!(Some(RoundConclusion::Failure), self.conclusion);
                    debug_assert!(self.ack_remaining > 0);
                    self.ack_remaining -= 1;
                    if self.ack_remaining == 0 {
                        return Some(RoundConclusion::Failure);
                    }
                }
                SyncCompContent::Notification | SyncCompContent::GlobalSolution(_) |
                SyncCompContent::GlobalFailure => {
                    unreachable!("unexpected message content for leader");
                },
            }
        } else {
            // Someone else is the leader
            let message = SyncCompMessage {
                sync_header: self.create_sync_header(ctx),
                target_component_id: self.highest_connector_id,
                content,
            };
            ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
        }

        return None;
    }

    fn handle_global_solution_as_leader(&mut self, global_solution: GlobalSolution, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
        if self.conclusion.is_some() {
            return None;
        }

        // Handle the global solution
        let mut my_final_branch_id = BranchId::new_invalid();
        for (connector_id, branch_id, sync_round) in global_solution.component_branches.iter().copied() {
            if connector_id == ctx.id {
                // This is our solution branch
                my_final_branch_id = branch_id;
                continue;
            }

            // Send solution message
            let message = SyncCompMessage {
                sync_header: self.create_sync_header(ctx),
                target_component_id: connector_id,
                content: SyncCompContent::GlobalSolution(global_solution.clone()),
            };
            ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel

            // Update peers as leader. Subsequent call to `end_sync` will update
            // the round numbers
            match self.peers.iter_mut().find(|v| v.id == connector_id) {
                Some(peer) => {
                    peer.expected_sync_round = sync_round;
                },
                None => {
                    self.peers.push(Peer{
                        id: connector_id,
                        expected_sync_round: sync_round,
                        encountered_this_round: true,
                    });
                }
            }
        }

        debug_assert!(my_final_branch_id.is_valid());
        self.conclusion = Some(RoundConclusion::Success(my_final_branch_id));
        return Some(RoundConclusion::Success(my_final_branch_id));
    }

    fn handle_global_failure_as_leader(&mut self, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
        debug_assert!(self.solution_combiner.failure_reported && self.solution_combiner.check_for_global_failure());
        if self.conclusion.is_some() {
            // Already sent out a failure
            return None;
        }

        // TODO: Performance
        let mut encountered = VecSet::new();
        for presence in &self.solution_combiner.presence {
            if presence.owner_a != ctx.id {
                // Did not add it ourselves
                if encountered.push(presence.owner_a) {
                    // Not yet sent a message
                    let message = SyncCompMessage{
                        sync_header: self.create_sync_header(ctx),
                        target_component_id: presence.owner_a,
                        content: SyncCompContent::GlobalFailure,
                    };
                    ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
                }
            }

            if let Some(owner_b) = presence.owner_b {
                if owner_b != ctx.id {
                    if encountered.push(owner_b) {
                        let message = SyncCompMessage{
                            sync_header: self.create_sync_header(ctx),
                            target_component_id: owner_b,
                            content: SyncCompContent::GlobalFailure,
                        };
                        ctx.submit_message(Message::SyncComp(message)).unwrap();
                    }
                }
            }
        }

        println!("DEBUGERINO: Leader entering error state, we need to wait on {:?}", encountered.iter().map(|v| v.index).collect::<Vec<_>>());
        self.conclusion = Some(RoundConclusion::Failure);
        if encountered.is_empty() {
            // We don't have to wait on Acks
            return Some(RoundConclusion::Failure);
        } else {
            self.ack_remaining = encountered.len() as u32;
            return None;
        }
    }

    fn initiate_sync_failure(&mut self, ctx: &mut ComponentCtx) -> Option<RoundConclusion> {
        debug_assert!(self.is_in_sync());

        // Notify leader of our channels and the fact that we just failed
        let channel_mapping = &self.branch_annotations[0].channel_mapping;
        let mut channel_presence = Vec::with_capacity(channel_mapping.len());
        for mapping in channel_mapping {
            let port = ctx.get_port_by_channel_id(mapping.channel_id).unwrap();
            channel_presence.push(LocalChannelPresence{
                channel_id: mapping.channel_id,
                is_closed: port.state == PortState::Closed,
            });
        }
        let maybe_already = self.send_to_leader_or_handle_as_leader(SyncCompContent::Presence(ComponentPresence{
            component_id: ctx.id,
            channels: channel_presence,
        }), ctx);

        if self.handled_wave {
            // Someone (or us) has already initiated a sync failure.
            return maybe_already;
        }

        let maybe_conclusion = self.send_to_leader_or_handle_as_leader(SyncCompContent::LocalFailure, ctx);
        debug_assert!(if maybe_already.is_some() { maybe_conclusion.is_some() } else { true });
        println!("DEBUG: Maybe conclusion is {:?}", maybe_conclusion);

        // Initiate a discovery wave so peers can do the same
        self.handled_wave = true;
        for mapping in &self.branch_annotations[0].channel_mapping {
            let channel_id = mapping.channel_id;
            let port_info = ctx.get_port_by_channel_id(channel_id).unwrap();
            let message = SyncPortMessage{
                sync_header: self.create_sync_header(ctx),
                source_port: port_info.self_id,
                target_port: port_info.peer_id,
                content: SyncPortContent::NotificationWave,
            };

            // Note: submitting the message might fail. But we're attempting to
            // handle the error anyway.
            // TODO: Think about this a second time: how do we make sure the
            //  entire network will fail if we reach this condition
            let _unused = ctx.submit_message(Message::SyncPort(message));
        }

        return maybe_conclusion;
    }

    #[inline]
    fn create_sync_header(&self, ctx: &ComponentCtx) -> SyncHeader {
        return SyncHeader{
            sending_component_id: ctx.id,
            highest_component_id: self.highest_connector_id,
            sync_round: self.sync_round,
        }
    }

    fn forward_local_data_to_new_leader(&mut self, ctx: &mut ComponentCtx) {
        debug_assert_ne!(self.highest_connector_id, ctx.id);

        if let Some(partial_solution) = self.solution_combiner.drain() {
            let message = SyncCompMessage {
                sync_header: self.create_sync_header(ctx),
                target_component_id: self.highest_connector_id,
                content: SyncCompContent::PartialSolution(partial_solution),
            };
            ctx.submit_message(Message::SyncComp(message)).unwrap(); // unwrap: sending to component instead of through channel
        }
    }
}

// -----------------------------------------------------------------------------
// Solution storage and algorithms
// -----------------------------------------------------------------------------

// TODO: Remove all debug derives

#[derive(Debug, Clone)]
struct MatchedLocalSolution {
    final_branch_id: BranchId,
    channel_mapping: Vec<(ChannelId, BranchMarker)>,
    matches: Vec<ComponentMatches>,
}

#[derive(Debug, Clone)]
struct ComponentMatches {
    target_id: ConnectorId,
    target_index: usize,
    match_indices: Vec<usize>, // of local solution in connector
}

#[derive(Debug, Clone)]
struct ComponentPeer {
    target_id: ConnectorId,
    target_index: usize, // in array of global solution components
    involved_channels: Vec<ChannelId>,
}

#[derive(Debug, Clone)]
struct ComponentLocalSolutions {
    component: ConnectorId,
    sync_round: u32,
    peers: Vec<ComponentPeer>,
    solutions: Vec<MatchedLocalSolution>,
    all_peers_present: bool,
}

#[derive(Debug, Clone)]
pub(crate) struct ComponentPresence {
    component_id: ConnectorId,
    channels: Vec<LocalChannelPresence>,
}

#[derive(Debug, Clone)]
pub(crate) struct LocalChannelPresence {
    channel_id: ChannelId,
    is_closed: bool,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum PresenceState {
    OnePresent, // one component reported the channel being open
    BothPresent, // two components reported the channel being open
    Closed, // one component reported the channel being closed
}

/// Record to hold channel state during the error-resolving mode of the leader.
/// This is used to determine when the sync region has grown to its largest
/// size. The structure is eventually consistent in the sense that a component
/// might initially presume a channel is open, only to figure out later it is
/// actually closed.
#[derive(Debug, Clone)]
struct ChannelPresence {
    owner_a: ConnectorId,
    owner_b: Option<ConnectorId>,
    id: ChannelId,
    state: PresenceState,
}

// TODO: Flatten? Flatten. Flatten everything.
#[derive(Debug)]
pub(crate) struct SolutionCombiner {
    local: Vec<ComponentLocalSolutions>, // used for finding solution
    presence: Vec<ChannelPresence>, // used to detect all channels present in case of failure
    failure_reported: bool,
}

struct CheckEntry {
    component_index: usize,         // component index in combiner's vector
    solution_index: usize,          // solution entry in the above component entry
    parent_entry_index: usize,      // parent that caused the creation of this checking entry
    match_index_in_parent: usize,   // index in the matches array of the parent
    solution_index_in_parent: usize,// index in the solution array of the match entry in the parent
}

enum LeaderConclusion {
    Solution(GlobalSolution),
    Failure,
}

impl SolutionCombiner {
    fn new() -> Self {
        return Self{
            local: Vec::new(),
            presence: Vec::new(),
            failure_reported: false,
        };
    }

    /// Adds a new local solution to the global solution storage. Will check the
    /// new local solutions for matching against already stored local solutions
    /// of peer connectors.
    fn add_solution_and_check_for_global_solution(&mut self, solution: LocalSolution) -> Option<GlobalSolution> {
        let component_id = solution.component;
        let sync_round = solution.sync_round_number;
        let solution = MatchedLocalSolution{
            final_branch_id: solution.final_branch_id,
            channel_mapping: solution.port_mapping,
            matches: Vec::new(),
        };

        // Create an entry for the solution for the particular component
        let component_exists = self.local.iter_mut()
            .enumerate()
            .find(|(_, v)| v.component == component_id);
        let (component_index, solution_index, new_component) = match component_exists {
            Some((component_index, storage)) => {
                // Entry for component exists, so add to solutions
                let solution_index = storage.solutions.len();
                storage.solutions.push(solution);

                (component_index, solution_index, false)
            }
            None => {
                // Entry for component does not exist yet
                let component_index = self.local.len();
                self.local.push(ComponentLocalSolutions{
                    component: component_id,
                    sync_round,
                    peers: Vec::new(),
                    solutions: vec![solution],
                    all_peers_present: false,
                });
                (component_index, 0, true)
            }
        };

        // If this is a solution of a component that is new to us, then we check
        // in the stored solutions which other components are peers of the new
        // one.
        if new_component {
            let cur_ports = &self.local[component_index].solutions[0].channel_mapping;
            let mut component_peers = Vec::new();

            // Find the matching components
            for (other_index, other_component) in self.local.iter().enumerate() {
                if other_index == component_index {
                    // Don't match against ourselves
                    continue;
                }

                let mut matching_channels = Vec::new();
                for (cur_channel_id, _) in cur_ports {
                    for (other_channel_id, _) in &other_component.solutions[0].channel_mapping {
                        if cur_channel_id == other_channel_id {
                            // We have a shared port
                            matching_channels.push(*cur_channel_id);
                        }
                    }
                }

                if !matching_channels.is_empty() {
                    // We share some ports
                    component_peers.push(ComponentPeer{
                        target_id: other_component.component,
                        target_index: other_index,
                        involved_channels: matching_channels,
                    });
                }
            }

            let mut num_ports_in_peers = 0;
            for peer in &component_peers {
                num_ports_in_peers += peer.involved_channels.len();
            }

            if num_ports_in_peers == cur_ports.len() {
                // Newly added component has all required peers present
                self.local[component_index].all_peers_present = true;
            }

            // Add the found component pairing entries to the solution entries
            // for the two involved components
            for component_match in component_peers {
                // Check the other component for having all peers present
                let mut num_ports_in_peers = component_match.involved_channels.len();
                let other_component = &mut self.local[component_match.target_index];
                for existing_peer in &other_component.peers {
                    num_ports_in_peers += existing_peer.involved_channels.len();
                }

                if num_ports_in_peers == other_component.solutions[0].channel_mapping.len() {
                    other_component.all_peers_present = true;
                }

                other_component.peers.push(ComponentPeer{
                    target_id: component_id,
                    target_index: component_index,
                    involved_channels: component_match.involved_channels.clone(),
                });

                let new_component = &mut self.local[component_index];
                new_component.peers.push(component_match);
            }
        }

        // We're now sure that we know which other components the currently
        // considered component is linked up to. Now we need to check those
        // entries (if any) to see if any pair of local solutions match
        let mut new_component_matches = Vec::new();
        let cur_component = &self.local[component_index];
        let cur_solution = &cur_component.solutions[solution_index];

        for peer in &cur_component.peers {
            let mut new_solution_matches = Vec::new();

            let other_component = &self.local[peer.target_index];
            for (other_solution_index, other_solution) in other_component.solutions.iter().enumerate() {
                // Check the port mappings between the pair of solutions.
                let mut all_matched = true;

                'mapping_check_loop: for (cur_port, cur_branch) in &cur_solution.channel_mapping {
                    for (other_port, other_branch) in &other_solution.channel_mapping {
                        if cur_port == other_port {
                            if cur_branch == other_branch {
                                // Same port mapping, go to next port
                                break;
                            } else {
                                // Different port mapping, not a match
                                all_matched = false;
                                break 'mapping_check_loop;
                            }
                        }
                    }
                }

                if !all_matched {
                    continue;
                }

                // Port mapping between the component pair is the same, so they
                // have agreeable local solutions
                new_solution_matches.push(other_solution_index);
            }

            new_component_matches.push(ComponentMatches{
                target_id: peer.target_id,
                target_index: peer.target_index,
                match_indices: new_solution_matches,
            });
        }

        // And now that we have the new solution-to-solution matches, we need to
        // add those in the appropriate storage.
        for new_component_match in new_component_matches {
            let other_component = &mut self.local[new_component_match.target_index];

            for other_solution_index in new_component_match.match_indices.iter().copied() {
                let other_solution = &mut other_component.solutions[other_solution_index];

                // Add a completely new entry for the component, or add it to
                // the existing component entry's matches
                match other_solution.matches.iter_mut()
                    .find(|v| v.target_id == component_id)
                {
                    Some(other_match) => {
                        other_match.match_indices.push(solution_index);
                    },
                    None => {
                        other_solution.matches.push(ComponentMatches{
                            target_id: component_id,
                            target_index: component_index,
                            match_indices: vec![solution_index],
                        })
                    }
                }
            }

            let cur_component = &mut self.local[component_index];
            let cur_solution = &mut cur_component.solutions[solution_index];

            match cur_solution.matches.iter_mut()
                .find(|v| v.target_id == new_component_match.target_id)
            {
                Some(other_match) => {
                    // Already have an entry
                    debug_assert_eq!(other_match.target_index, new_component_match.target_index);
                    other_match.match_indices.extend(&new_component_match.match_indices);
                },
                None => {
                    // Create a new entry
                    cur_solution.matches.push(new_component_match);
                }
            }
        }

        return self.check_for_global_solution(component_index, solution_index);
    }

    fn add_presence_and_check_for_global_failure(&mut self, component_id: ConnectorId, channels: &[LocalChannelPresence]) -> bool {
        for entry in channels {
            let mut found = false;

            for existing in &mut self.presence {
                if existing.id == entry.channel_id {
                    // Same entry. We only update if we have the second
                    // component coming in it owns one end of the channel, or if
                    // a component is telling us that the channel is (now)
                    // closed.
                    if entry.is_closed {
                        existing.state = PresenceState::Closed;
                    } else if component_id != existing.owner_a && existing.state != PresenceState::Closed {
                        existing.state = PresenceState::BothPresent;
                    }

                    if existing.owner_a != component_id {
                        existing.owner_b = Some(component_id);
                    }

                    found = true;
                    break;
                }
            }

            if !found {
                self.presence.push(ChannelPresence{
                    owner_a: component_id,
                    owner_b: None,
                    id: entry.channel_id,
                    state: if entry.is_closed { PresenceState::Closed } else { PresenceState::OnePresent },
                });
            }
        }

        println!("DEBUGGERINO Presence is now:\n{:#?}", self.presence);

        return self.check_for_global_failure();
    }

    fn mark_failure_and_check_for_global_failure(&mut self) -> bool {
        self.failure_reported = true;
        return self.check_for_global_failure();
    }

    /// Checks if, starting at the provided local solution, a global solution
    /// can be formed.
    // TODO: At some point, check if divide and conquer is faster?
    fn check_for_global_solution(&self, initial_component_index: usize, initial_solution_index: usize) -> Option<GlobalSolution> {
        // Small trivial test necessary (but not sufficient) for a global
        // solution
        for component in &self.local {
            if !component.all_peers_present {
                return None;
            }
        }

        // Construct initial entry on stack
        let mut stack = Vec::with_capacity(self.local.len());
        stack.push(CheckEntry{
            component_index: initial_component_index,
            solution_index: initial_solution_index,
            parent_entry_index: 0,
            match_index_in_parent: 0,
            solution_index_in_parent: 0,
        });

        'check_last_stack: loop {
            let cur_index = stack.len() - 1;
            let cur_entry = &stack[cur_index];

            // Check if the current component is matching with all other entries
            let mut all_match = true;
            'check_against_existing: for prev_index in 0..cur_index {
                let prev_entry = &stack[prev_index];
                let prev_component = &self.local[prev_entry.component_index];
                let prev_solution = &prev_component.solutions[prev_entry.solution_index];

                for prev_matching_component in &prev_solution.matches {
                    if prev_matching_component.target_index == cur_entry.component_index {
                        // Previous entry has shared ports with the current
                        // entry, so see if we have a composable pair of
                        // solutions.
                        if !prev_matching_component.match_indices.contains(&cur_entry.solution_index) {
                            all_match = false;
                            break 'check_against_existing;
                        }
                    }
                }
            }

            if all_match {
                // All components matched until now.
                if stack.len() == self.local.len() {
                    // We have found a global solution
                    break 'check_last_stack;
                }

                // Not all components found yet, look for a new one that has not
                // yet been added yet.
                for (parent_index, parent_entry) in stack.iter().enumerate() {
                    let parent_component = &self.local[parent_entry.component_index];
                    let parent_solution = &parent_component.solutions[parent_entry.solution_index];

                    for (peer_index, peer_component) in parent_solution.matches.iter().enumerate() {
                        if peer_component.match_indices.is_empty() {
                            continue;
                        }

                        let already_added = stack.iter().any(|v| v.component_index == peer_component.target_index);
                        if !already_added {
                            // New component to try
                            stack.push(CheckEntry{
                                component_index: peer_component.target_index,
                                solution_index: peer_component.match_indices[0],
                                parent_entry_index: parent_index,
                                match_index_in_parent: peer_index,
                                solution_index_in_parent: 0,
                            });
                            continue 'check_last_stack;
                        }
                    }
                }

                // Cannot find a peer to add. This is possible if, for example,
                // we have a component A which has the only connection to
                // component B. And B has sent a local solution saying it is
                // finished, but the last data message has not yet arrived at A.

                // In any case, we just exit the if statement and handle not
                // being able to find a new connector as being forced to try a
                // new permutation of possible local solutions.
            }

            // Either the currently considered local solution is inconsistent
            // with other local solutions, or we cannot find a new component to
            // add. This is where we perform backtracking as long as needed to
            // try a new solution.
            while stack.len() > 1 {
                // Check if our parent has another solution we can try
                let cur_index = stack.len() - 1;
                let cur_entry = &stack[cur_index];

                let parent_entry = &stack[cur_entry.parent_entry_index];
                let parent_component = &self.local[parent_entry.component_index];
                let parent_solution = &parent_component.solutions[parent_entry.solution_index];

                let match_component = &parent_solution.matches[cur_entry.match_index_in_parent];
                debug_assert!(match_component.target_index == cur_entry.component_index);
                let new_solution_index_in_parent = cur_entry.solution_index_in_parent + 1;

                if new_solution_index_in_parent < match_component.match_indices.len() {
                    // We can still try a new one
                    let new_solution_index = match_component.match_indices[new_solution_index_in_parent];
                    let cur_entry = &mut stack[cur_index];
                    cur_entry.solution_index_in_parent = new_solution_index_in_parent;
                    cur_entry.solution_index = new_solution_index;
                    continue 'check_last_stack;
                } else {
                    // We're out of options here. So pop an entry, then in
                    // the next iteration of this backtracking loop we try
                    // to increment that solution
                    stack.pop();
                }
            }

            // Stack length is 1, hence we're back at our initial solution.
            // Since that doesn't yield a global solution, we simply:
            return None;
        }

        // Constructing the representation of the global solution
        debug_assert_eq!(stack.len(), self.local.len());
        let mut final_branches = Vec::with_capacity(stack.len());
        for entry in &stack {
            let component = &self.local[entry.component_index];
            let solution = &component.solutions[entry.solution_index];
            final_branches.push((component.component, solution.final_branch_id, component.sync_round));
        }

        // Just debugging here, TODO: @remove
        let mut total_num_channels = 0;
        for entry in &stack {
            let component = &self.local[entry.component_index];
            total_num_channels += component.solutions[0].channel_mapping.len();
        }

        total_num_channels /= 2;
        let mut final_mapping = Vec::with_capacity(total_num_channels);
        let mut total_num_checked = 0;

        for entry in &stack {
            let component = &self.local[entry.component_index];
            let solution = &component.solutions[entry.solution_index];

            for (channel_id, branch_id) in solution.channel_mapping.iter().copied() {
                match final_mapping.iter().find(|(v, _)| *v == channel_id) {
                    Some((_, encountered_branch_id)) => {
                        debug_assert_eq!(*encountered_branch_id, branch_id);
                        total_num_checked += 1;
                    },
                    None => {
                        final_mapping.push((channel_id, branch_id));
                    }
                }
            }
        }

        debug_assert_eq!(total_num_checked, total_num_channels);

        return Some(GlobalSolution{
            component_branches: final_branches,
            channel_mapping: final_mapping,
        });
    }

    /// Checks if all preconditions for global sync failure have been met
    fn check_for_global_failure(&self) -> bool {
        if !self.failure_reported {
            return false;
        }

        // Failure is reported, if all components are present then we may emit
        // the global failure broadcast
        // Check if all are present and we're preparing to fail this round
        let mut all_present = true;
        for presence in &self.presence {
            if presence.state == PresenceState::OnePresent {
                all_present = false;
                break;
            }
        }

        return all_present; // && failure_reported, which is checked above
    }

    /// Turns the entire (partially resolved) global solution into a structure
    /// that can be forwarded to a new parent. The new parent may then merge
    /// already obtained information.
    fn drain(&mut self) -> Option<SolutionCombiner> {
        if self.local.is_empty() && self.presence.is_empty() && !self.failure_reported {
            return None;
        }

        let result = SolutionCombiner{
            local: self.local.clone(),
            presence: self.presence.clone(),
            failure_reported: self.failure_reported,
        };

        self.local.clear();
        self.presence.clear();
        self.failure_reported = false;
        return Some(result);
    }

    // TODO: Entire routine is quite wasteful. Combine instead of doing all work
    //  again.
    fn combine(&mut self, combiner: SolutionCombiner) -> Option<LeaderConclusion> {
        self.failure_reported = self.failure_reported || combiner.failure_reported;

        // Handle local solutions
        if self.local.is_empty() {
            // Trivial case
            self.local = combiner.local;
        } else {
            for local in combiner.local {
                for matched in local.solutions {
                    let local_solution = LocalSolution{
                        component: local.component,
                        sync_round_number: local.sync_round,
                        final_branch_id: matched.final_branch_id,
                        port_mapping: matched.channel_mapping,
                    };
                    let maybe_solution = self.add_solution_and_check_for_global_solution(local_solution);
                    if let Some(global_solution) = maybe_solution {
                        return Some(LeaderConclusion::Solution(global_solution));
                    }
                }
            }
        }

        // Handle channel presence
        println!("DEBUGERINO: Presence before joining is {:#?}", &self.presence);
        if self.presence.is_empty() {
            // Trivial case
            self.presence = combiner.presence;
            println!("DEBUGERINO: Trivial merging")
        } else {
            for presence in combiner.presence {
                match self.presence.iter_mut().find(|v| v.id == presence.id) {
                    Some(entry) => {
                        // Combine entries. Take first that has Closed, then
                        // check first that has both, then check if they are
                        // combinable
                        if entry.state == PresenceState::Closed {
                            // Do nothing
                        } else if presence.state == PresenceState::Closed {
                            entry.owner_a = presence.owner_a;
                            entry.owner_b = presence.owner_b;
                            entry.state = PresenceState::Closed;
                        } else if entry.state == PresenceState::BothPresent {
                            // Again: do nothing
                        } else if presence.state == PresenceState::BothPresent {
                            entry.owner_a = presence.owner_a;
                            entry.owner_b = presence.owner_b;
                            entry.state = PresenceState::BothPresent;
                        } else {
                            // Both have one presence, combine into both present
                            debug_assert!(entry.state == PresenceState::OnePresent && presence.state == PresenceState::OnePresent);
                            entry.owner_b = Some(presence.owner_a);
                            entry.state = PresenceState::BothPresent;
                        }
                    },
                    None => {
                        self.presence.push(presence);
                    }
                }
            }
            println!("DEBUGERINO: Presence after joining is {:#?}", &self.presence);

            // After adding everything we might have immediately found a solution
            if self.check_for_global_failure() {
                println!("DEBUG: Returning immediate failure?");
                return Some(LeaderConclusion::Failure);
            }
        }

        return None;
    }

    fn clear(&mut self) {
        self.local.clear();
        self.presence.clear();
        self.failure_reported = false;
    }
}

// -----------------------------------------------------------------------------
// Generic Helpers
// -----------------------------------------------------------------------------

/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortIdLocal>) {
    // Helper to check a value for a port and recurse if needed.
    use crate::protocol::eval::Value;

    fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortIdLocal>) {
        match value {
            Value::Input(port_id) | Value::Output(port_id) => {
                // This is an actual port
                let cur_port = PortIdLocal::new(port_id.id);
                for prev_port in ports.iter() {
                    if *prev_port == cur_port {
                        // Already added
                        return;
                    }
                }

                ports.push(cur_port);
            },
            Value::Array(heap_pos) |
            Value::Message(heap_pos) |
            Value::String(heap_pos) |
            Value::Struct(heap_pos) |
            Value::Union(_, heap_pos) => {
                // Reference to some dynamic thing which might contain ports,
                // so recurse
                let heap_region = &group.regions[*heap_pos as usize];
                for embedded_value in heap_region {
                    find_port_in_value(group, embedded_value, ports);
                }
            },
            _ => {}, // values we don't care about
        }
    }

    // Clear the ports, then scan all the available values
    ports.clear();
    for value in &value_group.values {
        find_port_in_value(value_group, value, ports);
    }
}