Files @ c1b2442f23b2
Branch filter:

Location: CSY/reowolf/src/runtime/mod.rs

c1b2442f23b2 23.9 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
Remove references to old runtime and stale code
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
// Structure of module

mod branch;
mod native;
mod port;
mod scheduler;
mod consensus;
mod inbox;

#[cfg(test)] mod tests;
mod connector;

// Imports

use std::collections::VecDeque;
use std::sync::{Arc, Condvar, Mutex, RwLock};
use std::sync::atomic::{AtomicBool, AtomicU32, Ordering};
use std::thread::{self, JoinHandle};

use crate::collections::RawVec;
use crate::ProtocolDescription;

use connector::{ConnectorPDL, ConnectorPublic, ConnectorScheduling};
use scheduler::{Scheduler, ComponentCtx, SchedulerCtx, ControlMessageHandler};
use native::{Connector, ConnectorApplication, ApplicationInterface};
use inbox::Message;
use port::{ChannelId, Port, PortState};

/// A kind of token that, once obtained, allows mutable access to a connector.
/// We're trying to use move semantics as much as possible: the owner of this
/// key is the only one that may execute the connector's code.
#[derive(Debug)]
pub(crate) struct ConnectorKey {
    pub index: u32, // of connector
    pub generation: u32,
}

impl ConnectorKey {
    /// Downcasts the `ConnectorKey` type, which can be used to obtain mutable
    /// access, to a "regular ID" which can be used to obtain immutable access.
    #[inline]
    pub fn downcast(&self) -> ConnectorId {
        return ConnectorId{
            index: self.index,
            generation: self.generation,
        };
    }

    /// Turns the `ConnectorId` into a `ConnectorKey`, marked as unsafe as it
    /// bypasses the type-enforced `ConnectorKey`/`ConnectorId` system
    #[inline]
    pub unsafe fn from_id(id: ConnectorId) -> ConnectorKey {
        return ConnectorKey{
            index: id.index,
            generation: id.generation,
        };
    }
}

/// A kind of token that allows shared access to a connector. Multiple threads
/// may hold this
#[derive(Debug, Copy, Clone)]
pub struct ConnectorId{
    pub index: u32,
    pub generation: u32,
}

impl PartialEq for ConnectorId {
    fn eq(&self, other: &Self) -> bool {
        return self.index.eq(&other.index);
    }
}

impl Eq for ConnectorId{}

impl PartialOrd for ConnectorId{
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        return self.index.partial_cmp(&other.index)
    }
}

impl Ord for ConnectorId{
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        return self.partial_cmp(other).unwrap();
    }
}

impl ConnectorId {
    // TODO: Like the other `new_invalid`, maybe remove
    #[inline]
    pub fn new_invalid() -> ConnectorId {
        return ConnectorId {
            index: u32::MAX,
            generation: 0,
        };
    }

    #[inline]
    pub(crate) fn is_valid(&self) -> bool {
        return self.index != u32::MAX;
    }
}

// TODO: Change this, I hate this. But I also don't want to put `public` and
//  `router` of `ScheduledConnector` back into `Connector`. The reason I don't
//  want `Box<dyn Connector>` everywhere is because of the v-table overhead. But
//  to truly design this properly I need some benchmarks.
pub(crate) enum ConnectorVariant {
    UserDefined(ConnectorPDL),
    Native(Box<dyn Connector>),
}

impl Connector for ConnectorVariant {
    fn run(&mut self, scheduler_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
        match self {
            ConnectorVariant::UserDefined(c) => c.run(scheduler_ctx, comp_ctx),
            ConnectorVariant::Native(c) => c.run(scheduler_ctx, comp_ctx),
        }
    }
}

pub(crate) struct ScheduledConnector {
    pub connector: ConnectorVariant, // access by connector
    pub ctx: ComponentCtx,
    pub public: ConnectorPublic, // accessible by all schedulers and connectors
    pub router: ControlMessageHandler,
    pub shutting_down: bool,
}

// -----------------------------------------------------------------------------
// Runtime
// -----------------------------------------------------------------------------

/// Externally facing runtime.
pub struct Runtime {
    inner: Arc<RuntimeInner>,
}

impl Runtime {
    pub fn new(num_threads: u32, protocol_description: ProtocolDescription) -> Runtime {
        // Setup global state
        assert!(num_threads > 0, "need a thread to run connectors");
        let runtime_inner = Arc::new(RuntimeInner{
            protocol_description,
            port_counter: AtomicU32::new(0),
            connectors: RwLock::new(ConnectorStore::with_capacity(32)),
            connector_queue: Mutex::new(VecDeque::with_capacity(32)),
            schedulers: Mutex::new(Vec::new()),
            scheduler_notifier: Condvar::new(),
            active_connectors: AtomicU32::new(0),
            active_interfaces: AtomicU32::new(1), // this `Runtime` instance
            should_exit: AtomicBool::new(false),
        });

        // Launch threads
        {
            let mut schedulers = Vec::with_capacity(num_threads as usize);
            for thread_index in 0..num_threads {
                let cloned_runtime_inner = runtime_inner.clone();
                let thread = thread::Builder::new()
                    .name(format!("thread-{}", thread_index))
                    .spawn(move || {
                        let mut scheduler = Scheduler::new(cloned_runtime_inner, thread_index);
                        scheduler.run();
                    })
                    .unwrap();

                schedulers.push(thread);
            }

            let mut lock = runtime_inner.schedulers.lock().unwrap();
            *lock = schedulers;
        }

        // Return runtime
        return Runtime{ inner: runtime_inner };
    }

    /// Returns a new interface through which channels and connectors can be
    /// created.
    pub fn create_interface(&self) -> ApplicationInterface {
        self.inner.increment_active_interfaces();
        let (connector, mut interface) = ConnectorApplication::new(self.inner.clone());
        let connector_key = self.inner.create_interface_component(connector);
        interface.set_connector_id(connector_key.downcast());

        // Note that we're not scheduling. That is done by the interface in case
        // it is actually needed.
        return interface;
    }
}

impl Drop for Runtime {
    fn drop(&mut self) {
        self.inner.decrement_active_interfaces();
        let mut lock = self.inner.schedulers.lock().unwrap();
        for handle in lock.drain(..) {
            handle.join().unwrap();
        }
    }
}

// -----------------------------------------------------------------------------
// RuntimeInner
// -----------------------------------------------------------------------------

pub(crate) struct RuntimeInner {
    // Protocol
    pub(crate) protocol_description: ProtocolDescription,
    // Regular counter for port IDs
    port_counter: AtomicU32,
    // Storage of connectors and the work queue
    connectors: RwLock<ConnectorStore>,
    connector_queue: Mutex<VecDeque<ConnectorKey>>,
    schedulers: Mutex<Vec<JoinHandle<()>>>,
    // Conditions to determine whether the runtime can exit
    scheduler_notifier: Condvar,  // coupled to mutex on `connector_queue`.
    // TODO: Figure out if we can simply merge the counters?
    active_connectors: AtomicU32, // active connectors (if sleeping, then still considered active)
    active_interfaces: AtomicU32, // active API interfaces that can add connectors/channels
    should_exit: AtomicBool,
}

impl RuntimeInner {
    // --- Managing the components queued for execution

    /// Wait until there is a connector to run. If there is one, then `Some`
    /// will be returned. If there is no more work, then `None` will be
    /// returned.
    pub(crate) fn wait_for_work(&self) -> Option<ConnectorKey> {
        let mut lock = self.connector_queue.lock().unwrap();
        while lock.is_empty() && !self.should_exit.load(Ordering::Acquire) {
            lock = self.scheduler_notifier.wait(lock).unwrap();
        }

        return lock.pop_front();
    }

    pub(crate) fn push_work(&self, key: ConnectorKey) {
        let mut lock = self.connector_queue.lock().unwrap();
        lock.push_back(key);
        self.scheduler_notifier.notify_one();
    }

    // --- Creating/using ports

    /// Creates a new port pair. Note that these are stored globally like the
    /// connectors are. Ports stored by components belong to those components.
    pub(crate) fn create_channel(&self, creating_connector: ConnectorId) -> (Port, Port) {
        use port::{PortIdLocal, PortKind};

        let getter_id = self.port_counter.fetch_add(2, Ordering::SeqCst);
        let channel_id = ChannelId::new(getter_id);
        let putter_id = PortIdLocal::new(getter_id + 1);
        let getter_id = PortIdLocal::new(getter_id);

        let getter_port = Port{
            self_id: getter_id,
            peer_id: putter_id,
            channel_id,
            kind: PortKind::Getter,
            state: PortState::Open,
            peer_connector: creating_connector,
        };
        let putter_port = Port{
            self_id: putter_id,
            peer_id: getter_id,
            channel_id,
            kind: PortKind::Putter,
            state: PortState::Open,
            peer_connector: creating_connector,
        };

        return (getter_port, putter_port);
    }

    /// Sends a message directly (without going through the port) to a
    /// component. This is slightly less efficient then sending over a port, but
    /// might be preferable for some algorithms. If the component was sleeping
    /// then it is scheduled for execution.
    pub(crate) fn send_message_maybe_destroyed(&self, target_id: ConnectorId, message: Message) -> bool {
        let target = {
            let mut lock = self.connectors.read().unwrap();
            lock.get(target_id.index)
        };

        // Do a CAS on the number of users. Most common case the component is
        // alive and we're the only one sending the message. Note that if we
        // finish this block, we're sure that no-one has set the `num_users`
        // value to 0. This is essential! When at 0, the component is added to
        // the freelist and the generation counter will be incremented.
        let mut cur_num_users = 1;
        while let Err(old_num_users) = target.num_users.compare_exchange(cur_num_users, cur_num_users + 1, Ordering::SeqCst, Ordering::Acquire) {
            if old_num_users == 0 {
                // Cannot send message. Whatever the component state is
                // (destroyed, at a different generation number, busy being
                // destroyed, etc.) we cannot send the message and will not
                // modify the component
                return false;
            }

            cur_num_users = old_num_users;
        }

        // We incremented the counter. But we might still be at the wrong
        // generation number. The generation number is a monotonically
        // increasing value. Since it only increases when someone gets the
        // `num_users` counter to 0, we can simply load the generation number.
        let generation = target.generation.load(Ordering::Acquire);
        if generation != target_id.generation {
            // We're at the wrong generation, so we cannot send the message.
            // However, since we incremented the `num_users` counter, the moment
            // we decrement it we might be the one that are supposed to handle
            // the destruction of the component. Note that all users of the
            // component do an increment-followed-by-decrement, we can simply
            // do a `fetch_sub`.
            let old_num_users = target.num_users.fetch_sub(1, Ordering::SeqCst);
            if old_num_users == 1 {
                // We're the one that got the counter to 0, so we're the ones
                // that are supposed to handle component exit
                self.finish_component_destruction(target_id);
            }

            return false;
        }

        // The generation is correct, and since we incremented the `num_users`
        // counter we're now sure that we can send the message and it will be
        // handled by the receiver
        target.connector.public.inbox.insert_message(message);

        // Finally, do the same as above: decrement number of users, if at gets
        // to 0 we're the ones who should handle the exit condition.
        let old_num_users = target.num_users.fetch_sub(1, Ordering::SeqCst);
        if old_num_users == 1 {
            // We're allowed to destroy the component.
            self.finish_component_destruction(target_id);
        } else {
            // Message is sent. If the component is sleeping, then we're sure
            // it is not scheduled and it has not initiated the destruction of
            // the component (because of the way
            // `initiate_component_destruction` does not set sleeping to true).
            // So we can safely schedule it.
            let should_wake_up = target.connector.public.sleeping
                .compare_exchange(true, false, Ordering::SeqCst, Ordering::Acquire)
                .is_ok();

            if should_wake_up {
                let key = unsafe{ ConnectorKey::from_id(target_id) };
                self.push_work(key);
            }
        }

        return true
    }

    /// Sends a message to a particular component, assumed to occur over a port.
    /// If the component happened to be sleeping then it will be scheduled for
    /// execution. Because of the port management system we may assumed that
    /// we're always accessing the component at the right generation number.
    pub(crate) fn send_message_assumed_alive(&self, target_id: ConnectorId, message: Message) {
        let target = {
            let lock = self.connectors.read().unwrap();
            let entry = lock.get(target_id.index);
            debug_assert_eq!(entry.generation.load(Ordering::Acquire), target_id.generation);
            &mut entry.connector.public
        };

        target.inbox.insert_message(message);

        let should_wake_up = target.sleeping
            .compare_exchange(true, false, Ordering::SeqCst, Ordering::Acquire)
            .is_ok();

        if should_wake_up {
            let key = unsafe{ ConnectorKey::from_id(target_id) };
            self.push_work(key);
        }
    }

    // --- Creating/retrieving/destroying components

    /// Creates an initially sleeping application connector.
    fn create_interface_component(&self, component: ConnectorApplication) -> ConnectorKey {
        // Initialize as sleeping, as it will be scheduled by the programmer.
        let mut lock = self.connectors.write().unwrap();
        let key = lock.create(ConnectorVariant::Native(Box::new(component)), true);

        self.increment_active_components();
        return key;
    }

    /// Creates a new PDL component. This function just creates the component.
    /// If you create it initially awake, then you must add it to the work
    /// queue. Other aspects of correctness (i.e. setting initial ports) are
    /// relinquished to the caller!
    pub(crate) fn create_pdl_component(&self, connector: ConnectorPDL, initially_sleeping: bool) -> ConnectorKey {
        // Create as not sleeping, as we'll schedule it immediately
        let key = {
            let mut lock = self.connectors.write().unwrap();
            lock.create(ConnectorVariant::UserDefined(connector), initially_sleeping)
        };

        self.increment_active_components();
        return key;
    }

    /// Retrieve private access to the component through its key.
    #[inline]
    pub(crate) fn get_component_private(&self, connector_key: &ConnectorKey) -> &'static mut ScheduledConnector {
        let entry = {
            let lock = self.connectors.read().unwrap();
            lock.get(connector_key.index)
        };

        debug_assert_eq!(entry.generation.load(Ordering::Acquire), connector_key.generation, "private access to {:?}", connector_key);
        return &mut entry.connector;
    }

    // --- Managing component destruction

    /// Start component destruction, may only be done by the scheduler that is
    /// executing the component. This might not actually destroy the component,
    /// since other components might be sending it messages.
    fn initiate_component_destruction(&self, connector_key: ConnectorKey) {
        // Most of the time no-one will be sending messages, so try
        // immediate destruction
        let mut lock = self.connectors.write().unwrap();
        let entry = lock.get(connector_key.index);
        debug_assert_eq!(entry.generation.load(Ordering::Acquire), connector_key.generation);
        debug_assert_eq!(entry.connector.public.sleeping.load(Ordering::Acquire), false); // not sleeping: caller is executing this component
        let old_num_users = entry.num_users.fetch_sub(1, Ordering::SeqCst);
        if old_num_users == 1 {
            // We just brought the number of users down to 0. Destroy the
            // component
            entry.connector.public.inbox.clear();
            entry.generation.fetch_add(1, Ordering::SeqCst);
            lock.destroy(connector_key);
            self.decrement_active_components();
        }
    }

    fn finish_component_destruction(&self, connector_id: ConnectorId) {
        let mut lock = self.connectors.write().unwrap();
        let entry = lock.get(connector_id.index);
        debug_assert_eq!(entry.num_users.load(Ordering::Acquire), 0);
        let _old_generation = entry.generation.fetch_add(1, Ordering::SeqCst);
        debug_assert_eq!(_old_generation, connector_id.generation);

        // TODO: In the future we should not only clear out the inbox, but send
        //  messages back to the senders indicating the messages did not arrive.
        entry.connector.public.inbox.clear();

        // Invariant of only one thread being able to handle the internals of
        // component is preserved by the fact that only one thread can decrement
        // `num_users` to 0.
        lock.destroy(unsafe{ ConnectorKey::from_id(connector_id) });
        self.decrement_active_components();
    }

    // --- Managing exit condition

    #[inline]
    pub(crate) fn increment_active_interfaces(&self) {
        let _old_num = self.active_interfaces.fetch_add(1, Ordering::SeqCst);
        debug_assert_ne!(_old_num, 0); // once it hits 0, it stays zero
    }

    pub(crate) fn decrement_active_interfaces(&self) {
        let old_num = self.active_interfaces.fetch_sub(1, Ordering::SeqCst);
        debug_assert!(old_num > 0);
        if old_num == 1 { // such that active interfaces is now 0
            let num_connectors = self.active_connectors.load(Ordering::Acquire);
            if num_connectors == 0 {
                self.signal_for_shutdown();
            }
        }
    }

    #[inline]
    fn increment_active_components(&self) {
        let _old_num = self.active_connectors.fetch_add(1, Ordering::SeqCst);
    }

    fn decrement_active_components(&self) {
        let old_num = self.active_connectors.fetch_sub(1, Ordering::SeqCst);
        debug_assert!(old_num > 0);
        if old_num == 1 { // such that we have no more active connectors (for now!)
            let num_interfaces = self.active_interfaces.load(Ordering::Acquire);
            if num_interfaces == 0 {
                self.signal_for_shutdown();
            }
        }
    }

    #[inline]
    fn signal_for_shutdown(&self) {
        debug_assert_eq!(self.active_interfaces.load(Ordering::Acquire), 0);
        debug_assert_eq!(self.active_connectors.load(Ordering::Acquire), 0);

        let _lock = self.connector_queue.lock().unwrap();
        let should_signal = self.should_exit
            .compare_exchange(false, true, Ordering::SeqCst, Ordering::Acquire)
            .is_ok();

        if should_signal {
            self.scheduler_notifier.notify_all();
        }
    }
}

unsafe impl Send for RuntimeInner {}
unsafe impl Sync for RuntimeInner {}

// -----------------------------------------------------------------------------
// ConnectorStore
// -----------------------------------------------------------------------------

struct StoreEntry {
    connector: ScheduledConnector,
    generation: std::sync::atomic::AtomicU32,
    num_users: std::sync::atomic::AtomicU32,
}

struct ConnectorStore {
    // Freelist storage of connectors. Storage should be pointer-stable as
    // someone might be mutating the vector while we're executing one of the
    // connectors.
    entries: RawVec<*mut StoreEntry>,
    free: Vec<usize>,
}

impl ConnectorStore {
    fn with_capacity(capacity: usize) -> Self {
        Self {
            entries: RawVec::with_capacity(capacity),
            free: Vec::with_capacity(capacity),
        }
    }

    /// Directly retrieves an entry. There be dragons here. The `connector`
    /// might have its destructor already executed. Accessing it might then lead
    /// to memory corruption.
    fn get(&self, index: u32) -> &'static mut StoreEntry {
        unsafe {
            let entry = self.entries.get_mut(index as usize);
            return &mut **entry;
        }
    }

    /// Creates a new connector. Caller should ensure ports are set up correctly
    /// and the connector is queued for execution if needed.
    fn create(&mut self, connector: ConnectorVariant, initially_sleeping: bool) -> ConnectorKey {
        let mut connector = ScheduledConnector {
            connector,
            ctx: ComponentCtx::new_empty(),
            public: ConnectorPublic::new(initially_sleeping),
            router: ControlMessageHandler::new(),
            shutting_down: false,
        };

        let index;
        let key;

        if self.free.is_empty() {
            // No free entries, allocate new entry
            index = self.entries.len();
            key = ConnectorKey{
                index: index as u32, generation: 0
            };
            connector.ctx.id = key.downcast();

            let connector = Box::into_raw(Box::new(StoreEntry{
                connector,
                generation: AtomicU32::new(0),
                num_users: AtomicU32::new(1),
            }));
            self.entries.push(connector);
        } else {
            // Free spot available
            index = self.free.pop().unwrap();

            unsafe {
                let target = &mut **self.entries.get_mut(index);
                std::ptr::write(&mut target.connector as *mut _, connector);
                let _old_num_users = target.num_users.fetch_add(1, Ordering::SeqCst);
                debug_assert_eq!(_old_num_users, 0);

                let generation = target.generation.load(Ordering::Acquire);
                key = ConnectorKey{ index: index as u32, generation };
                target.connector.ctx.id = key.downcast();
            }
        }

        println!("DEBUG [ global store  ] Created component at {}", key.index);
        return key;
    }

    /// Destroys a connector. Caller should make sure it is not scheduled for
    /// execution. Otherwise one experiences "bad stuff" (tm).
    fn destroy(&mut self, key: ConnectorKey) {
        unsafe {
            let target = self.entries.get_mut(key.index as usize);
            (**target).generation.fetch_add(1, Ordering::SeqCst);
            std::ptr::drop_in_place(*target);
            // Note: but not deallocating!
        }

        println!("DEBUG [ global store  ] Destroyed component at {}", key.index);
        self.free.push(key.index as usize);
    }
}

impl Drop for ConnectorStore {
    fn drop(&mut self) {
        // Everything in the freelist already had its destructor called, so only
        // has to be deallocated
        for free_idx in self.free.iter().copied() {
            unsafe {
                let memory = self.entries.get_mut(free_idx);
                let layout = std::alloc::Layout::for_value(&**memory);
                std::alloc::dealloc(*memory as *mut u8, layout);

                // mark as null for the remainder
                *memory = std::ptr::null_mut();
            }
        }

        // With the deallocated stuff marked as null, clear the remainder that
        // is not null
        for idx in 0..self.entries.len() {
            unsafe {
                let memory = *self.entries.get_mut(idx);
                if !memory.is_null() {
                    let _ = Box::from_raw(memory); // take care of deallocation, bit dirty, but meh
                }
            }
        }
    }
}