Files @ c1b2442f23b2
Branch filter:

Location: CSY/reowolf/src/runtime_old/communication.rs

c1b2442f23b2 68.6 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
Remove references to old runtime and stale code
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
use super::*;
use crate::common::*;
use core::ops::{Deref, DerefMut};

// Guard protecting an incrementally unfoldable slice of MapTempGuard elements
struct MapTempsGuard<'a, K, V>(&'a mut [HashMap<K, V>]);

// Type protecting a temporary map; At the start and end of the Guard's lifetime, self.0.is_empty() must be true
struct MapTempGuard<'a, K, V>(&'a mut HashMap<K, V>);

// Once the synchronous round has begun, this structure manages the
// native component's speculative branches, one per synchronous batch.
struct BranchingNative {
    branches: HashMap<Predicate, NativeBranch>,
}

// Corresponds to one of the native's synchronous batches during the synchronous round.
// ports marked for message receipt correspond to entries of
// (a) `gotten` if they have not received yet,
// (b) `to_get` if they have already received, with the given payload.
// The branch corresponds to a component solution IFF to_get is empty.
#[derive(Clone, Debug)]
struct NativeBranch {
    index: usize,
    gotten: HashMap<PortId, Payload>,
    to_get: HashSet<PortId>,
}

// Manages a protocol component's speculative branches for the duration
// of the synchronous round.
#[derive(Debug)]
struct BranchingProtoComponent {
    branches: HashMap<Predicate, ProtoComponentBranch>,
}

// One specualtive branch of a protocol component.
// `ended` IFF this branch has reached SyncBlocker::SyncBlockEnd before.
#[derive(Debug, Clone)]
struct ProtoComponentBranch {
    state: ComponentState,
    inner: ProtoComponentBranchInner,
    ended: bool,
}

// A structure wrapping a set of three pointers, making it impossible
// to miss that they are being setup for `cyclic_drain`.
struct CyclicDrainer<'a, K: Eq + Hash, V> {
    input: &'a mut HashMap<K, V>,
    swap: &'a mut HashMap<K, V>,
    output: &'a mut HashMap<K, V>,
}

// Small convenience trait for extending the stdlib's bool type with
// an optionlike replace method for increasing brevity.
trait ReplaceBoolTrue {
    fn replace_with_true(&mut self) -> bool;
}

//////////////// IMPL ////////////////////////////

impl ReplaceBoolTrue for bool {
    fn replace_with_true(&mut self) -> bool {
        let was = *self;
        *self = true;
        !was
    }
}

// CuUndecided provides a mostly immutable view into the ConnectorUnphased structure,
// making it harder to accidentally mutate its contents in a way that cannot be rolled back.
impl CuUndecided for ConnectorUnphased {
    fn logger_and_protocol_description(&mut self) -> (&mut dyn Logger, &ProtocolDescription) {
        (&mut *self.logger, &self.proto_description)
    }
    fn logger_and_protocol_components(
        &mut self,
    ) -> (&mut dyn Logger, &mut HashMap<ComponentId, ComponentState>) {
        (&mut *self.logger, &mut self.proto_components)
    }
    fn logger(&mut self) -> &mut dyn Logger {
        &mut *self.logger
    }
    fn proto_description(&self) -> &ProtocolDescription {
        &self.proto_description
    }
    fn native_component_id(&self) -> ComponentId {
        self.native_component_id
    }
}
impl<'a, K, V> MapTempsGuard<'a, K, V> {
    fn reborrow(&mut self) -> MapTempsGuard<'_, K, V> {
        MapTempsGuard(self.0)
    }
    fn split_first_mut(self) -> (MapTempGuard<'a, K, V>, MapTempsGuard<'a, K, V>) {
        let (head, tail) = self.0.split_first_mut().expect("Cache exhausted");
        (MapTempGuard::new(head), MapTempsGuard(tail))
    }
}
impl<'a, K, V> MapTempGuard<'a, K, V> {
    fn new(map: &'a mut HashMap<K, V>) -> Self {
        assert!(map.is_empty()); // sanity check
        Self(map)
    }
}
impl<'a, K, V> Drop for MapTempGuard<'a, K, V> {
    fn drop(&mut self) {
        assert!(self.0.is_empty()); // sanity check
    }
}
impl<'a, K, V> Deref for MapTempGuard<'a, K, V> {
    type Target = HashMap<K, V>;
    fn deref(&self) -> &<Self as Deref>::Target {
        self.0
    }
}
impl<'a, K, V> DerefMut for MapTempGuard<'a, K, V> {
    fn deref_mut(&mut self) -> &mut <Self as Deref>::Target {
        self.0
    }
}
impl Connector {
    /// Read the message received by the given port in the previous synchronous round.
    pub fn gotten(&self, port: PortId) -> Result<&Payload, GottenError> {
        use GottenError as Ge;
        if let ConnectorPhased::Communication(comm) = &self.phased {
            match &comm.round_result {
                Err(_) => Err(Ge::PreviousSyncFailed),
                Ok(None) => Err(Ge::NoPreviousRound),
                Ok(Some(round_ok)) => round_ok.gotten.get(&port).ok_or(Ge::PortDidntGet),
            }
        } else {
            return Err(Ge::NoPreviousRound);
        }
    }
    /// Creates a new, empty synchronous batch for the connector and selects it.
    /// Subsequent calls to `put` and `get` with populate the new batch with port operations.
    pub fn next_batch(&mut self) -> Result<usize, WrongStateError> {
        // returns index of new batch
        if let ConnectorPhased::Communication(comm) = &mut self.phased {
            comm.native_batches.push(Default::default());
            Ok(comm.native_batches.len() - 1)
        } else {
            Err(WrongStateError)
        }
    }

    fn port_op_access(
        &mut self,
        port: PortId,
        expect_polarity: Polarity,
    ) -> Result<&mut NativeBatch, PortOpError> {
        use PortOpError as Poe;
        let Self { unphased: cu, phased } = self;
        let info = cu.ips.port_info.map.get(&port).ok_or(Poe::UnknownPolarity)?;
        if info.owner != cu.native_component_id {
            return Err(Poe::PortUnavailable);
        }
        if info.polarity != expect_polarity {
            return Err(Poe::WrongPolarity);
        }
        match phased {
            ConnectorPhased::Setup { .. } => Err(Poe::NotConnected),
            ConnectorPhased::Communication(comm) => {
                let batch = comm.native_batches.last_mut().unwrap(); // length >= 1 is invariant
                Ok(batch)
            }
        }
    }

    /// Add a `put` operation to the connector's currently-selected synchronous batch.
    /// Returns an error if the given port is not owned by the native component,
    /// has the wrong polarity, or is already included in the batch.
    pub fn put(&mut self, port: PortId, payload: Payload) -> Result<(), PortOpError> {
        use PortOpError as Poe;
        let batch = self.port_op_access(port, Putter)?;
        if batch.to_put.contains_key(&port) {
            Err(Poe::MultipleOpsOnPort)
        } else {
            batch.to_put.insert(port, payload);
            Ok(())
        }
    }

    /// Add a `get` operation to the connector's currently-selected synchronous batch.
    /// Returns an error if the given port is not owned by the native component,
    /// has the wrong polarity, or is already included in the batch.
    pub fn get(&mut self, port: PortId) -> Result<(), PortOpError> {
        use PortOpError as Poe;
        let batch = self.port_op_access(port, Getter)?;
        if batch.to_get.insert(port) {
            Ok(())
        } else {
            Err(Poe::MultipleOpsOnPort)
        }
    }

    /// Participate in the completion of the next synchronous round, in which
    /// the native component will perform the set of prepared operations of exactly one
    /// of the synchronous batches. At the end of the procedure, the synchronous
    /// batches will be reset to a singleton set, whose only element is selected, and empty.
    /// The caller yields control over to the connector runtime to faciltiate the underlying
    /// coordination work until either (a) the round is completed with all components' states
    /// updated accordingly, (b) a distributed failure event resets all components'
    /// states to what they were prior to the sync call, or (c) the sync procedure encounters
    /// an unrecoverable error which ends the call early, and breaks the session and connector's
    /// states irreversably.
    /// Note that the (b) case necessitates the success of a distributed rollback procedure,
    /// which this component may initiate, but cannot guarantee will succeed in time or at all.
    /// consequently, the given timeout duration represents a duration in which the connector
    /// will make a best effort to fail the round and return control flow to the caller.
    pub fn sync(&mut self, timeout: Option<Duration>) -> Result<usize, SyncError> {
        // This method first destructures the connector, and checks for obvious
        // failure cases. The bulk of the behavior continues in `connected_sync`,
        // to minimize indentation, and enable convient ?-style short circuit syntax.
        let Self { unphased: cu, phased } = self;
        match phased {
            ConnectorPhased::Setup { .. } => Err(SyncError::NotConnected),
            ConnectorPhased::Communication(comm) => {
                match &comm.round_result {
                    Err(SyncError::Unrecoverable(e)) => {
                        log!(cu.logger(), "Attempted to start sync round, but previous error {:?} was unrecoverable!", e);
                        return Err(SyncError::Unrecoverable(e.clone()));
                    }
                    _ => {}
                }
                comm.round_result = Self::connected_sync(cu, comm, timeout);
                comm.round_index += 1;
                match &comm.round_result {
                    Ok(None) => unreachable!(),
                    Ok(Some(ok_result)) => Ok(ok_result.batch_index),
                    Err(sync_error) => Err(sync_error.clone()),
                }
            }
        }
    }

    // Attempts to complete the synchronous round for the given
    // communication-phased connector structure.
    // Modifies components and ports in `cu` IFF the round succeeds.
    #[inline]
    fn connected_sync(
        cu: &mut ConnectorUnphased,
        comm: &mut ConnectorCommunication,
        timeout: Option<Duration>,
    ) -> Result<Option<RoundEndedNative>, SyncError> {
        //////////////////////////////////
        use SyncError as Se;
        //////////////////////////////////

        // Create separate storages for ports and components stored in `cu`,
        // while kicking off the branching of components until the set of
        // components entering their synchronous block is finalized in `branching_proto_components`.
        // This is the last time cu's components and ports are accessed until the round is decided.
        let mut ips = cu.ips.clone();
        let mut branching_proto_components =
            HashMap::<ComponentId, BranchingProtoComponent>::default();
        let mut unrun_components: Vec<(ComponentId, ComponentState)> = cu
            .proto_components
            .iter()
            .map(|(&proto_id, proto)| (proto_id, proto.clone()))
            .collect();
        log!(cu.logger(), "Nonsync running {} proto components...", unrun_components.len());
        // initially, the set of components to run is the set of components stored by `cu`,
        // but they are eventually drained into `branching_proto_components`.
        // Some components exit first, and others are created and put into `unrun_components`.
        while let Some((proto_component_id, mut component)) = unrun_components.pop() {
            log!(
                cu.logger(),
                "Nonsync running proto component with ID {:?}. {} to go after this",
                proto_component_id,
                unrun_components.len()
            );
            let (logger, proto_description) = cu.logger_and_protocol_description();
            let mut ctx = NonsyncProtoContext {
                ips: &mut ips,
                logger,
                proto_component_id,
                unrun_components: &mut unrun_components,
            };
            let blocker = component.nonsync_run(&mut ctx, proto_description);
            log!(
                logger,
                "proto component {:?} ran to nonsync blocker {:?}",
                proto_component_id,
                &blocker
            );
            use NonsyncBlocker as B;
            match blocker {
                B::ComponentExit => drop(component),
                B::Inconsistent => return Err(Se::InconsistentProtoComponent(proto_component_id)),
                B::SyncBlockStart => assert!(branching_proto_components
                    .insert(proto_component_id, BranchingProtoComponent::initial(component))
                    .is_none()), // Some(_) returned IFF some component identifier key is overwritten (BAD!)
            }
        }
        log!(
            cu.logger(),
            "All {} proto components are now done with Nonsync phase",
            branching_proto_components.len(),
        );

        // Create temporary structures needed for the synchronous phase of the round
        let mut rctx = RoundCtx {
            ips, // already used previously, now moved into RoundCtx
            solution_storage: {
                let subtree_id_iter = {
                    // Create an iterator over the identifiers of this
                    // connector's childen in the _solution tree_.
                    // Namely, the native, all locally-managed components,
                    // and all this connector's children in the _consensus tree_ (other connectors).
                    let n = std::iter::once(SubtreeId::LocalComponent(cu.native_component_id));
                    let c = branching_proto_components
                        .keys()
                        .map(|&cid| SubtreeId::LocalComponent(cid));
                    let e = comm
                        .neighborhood
                        .children
                        .iter()
                        .map(|&index| SubtreeId::NetEndpoint { index });
                    n.chain(c).chain(e)
                };
                log!(
                    cu.logger,
                    "Children in subtree are: {:?}",
                    DebuggableIter(subtree_id_iter.clone())
                );
                SolutionStorage::new(subtree_id_iter)
            },
            spec_var_stream: cu.ips.id_manager.new_spec_var_stream(),
            payload_inbox: Default::default(), // buffer for in-memory payloads to be handled
            deadline: timeout.map(|to| Instant::now() + to),
        };
        log!(cu.logger(), "Round context structure initialized");

        // Prepare the branching native component, involving the conversion
        // of its synchronous batches (user provided) into speculative branches eagerly.
        // As a side effect, send all PUTs with the appropriate predicates.
        // Afterwards, each native component's speculative branch finds a local
        // solution the moment it's received all the messages it's awaiting.
        log!(
            cu.logger(),
            "Translating {} native batches into branches...",
            comm.native_batches.len()
        );
        // Allocate a single speculative variable to distinguish each native branch.
        // This enables native components to have distinct branches with identical
        // FIRING variables.
        let native_spec_var = rctx.spec_var_stream.next();
        log!(cu.logger(), "Native branch spec var is {:?}", native_spec_var);
        let mut branching_native = BranchingNative { branches: Default::default() };
        'native_branches: for ((native_branch, index), branch_spec_val) in
            comm.native_batches.drain(..).zip(0..).zip(SpecVal::iter_domain())
        {
            let NativeBatch { to_get, to_put } = native_branch;
            // compute the solution predicate to associate with this branch.
            let predicate = {
                let mut predicate = Predicate::default();
                // all firing ports have SpecVal::FIRING
                let firing_iter = to_get.iter().chain(to_put.keys()).copied();
                log!(
                    cu.logger(),
                    "New native with firing ports {:?}",
                    firing_iter.clone().collect::<Vec<_>>()
                );
                let firing_ports: HashSet<PortId> = firing_iter.clone().collect();
                for port in firing_iter {
                    let var = cu.ips.port_info.spec_var_for(port);
                    predicate.assigned.insert(var, SpecVal::FIRING);
                }
                // all silent ports have SpecVal::SILENT
                for port in cu.ips.port_info.ports_owned_by(cu.native_component_id) {
                    if firing_ports.contains(port) {
                        // this one is FIRING
                        continue;
                    }
                    let var = cu.ips.port_info.spec_var_for(*port);
                    if let Some(SpecVal::FIRING) = predicate.assigned.insert(var, SpecVal::SILENT) {
                        log!(&mut *cu.logger, "Native branch index={} contains internal inconsistency wrt. {:?}. Skipping", index, var);
                        continue 'native_branches;
                    }
                }
                // this branch is consistent. distinguish it with a unique var:val mapping and proceed
                predicate.inserted(native_spec_var, branch_spec_val)
            };
            log!(cu.logger(), "Native branch index={:?} has consistent {:?}", index, &predicate);
            // send all outgoing messages (by buffering them)
            for (putter, payload) in to_put {
                let msg = SendPayloadMsg { predicate: predicate.clone(), payload };
                log!(
                    cu.logger(),
                    "Native branch {} sending msg {:?} with putter {:?}",
                    index,
                    &msg,
                    putter
                );
                // sanity check
                assert_eq!(Putter, cu.ips.port_info.map.get(&putter).unwrap().polarity);
                rctx.putter_push(cu, putter, msg);
            }
            let branch = NativeBranch { index, gotten: Default::default(), to_get };
            if branch.is_ended() {
                // empty to_get set => already corresponds with a component solution
                log!(
                    cu.logger(),
                    "Native submitting solution for batch {} with {:?}",
                    index,
                    &predicate
                );
                rctx.solution_storage.submit_and_digest_subtree_solution(
                    cu,
                    SubtreeId::LocalComponent(cu.native_component_id),
                    predicate.clone(),
                );
            }
            if let Some(_) = branching_native.branches.insert(predicate, branch) {
                // thanks to the native_spec_var, each batch has a distinct predicate
                unreachable!()
            }
        }
        // restore the invariant: !native_batches.is_empty()
        comm.native_batches.push(Default::default());
        // Call to another big method; keep running this round
        // until a distributed decision is reached!
        log!(cu.logger(), "Searching for decision...");
        let decision = Self::sync_reach_decision(
            cu,
            comm,
            &mut branching_native,
            &mut branching_proto_components,
            &mut rctx,
        )?;
        log!(cu.logger(), "Committing to decision {:?}!", &decision);
        comm.endpoint_manager.udp_endpoints_round_end(&mut *cu.logger(), &decision)?;

        // propagate the decision to children
        let msg = Msg::CommMsg(CommMsg {
            round_index: comm.round_index,
            contents: CommMsgContents::CommCtrl(CommCtrlMsg::Announce {
                decision: decision.clone(),
            }),
        });
        log!(
            cu.logger(),
            "Announcing decision {:?} through child endpoints {:?}",
            &msg,
            &comm.neighborhood.children
        );
        for &child in comm.neighborhood.children.iter() {
            comm.endpoint_manager.send_to_comms(child, &msg)?;
        }
        let ret = match decision {
            Decision::Failure => {
                // untouched port/component fields of `cu` are NOT overwritten.
                // the result is a rollback.
                Err(Se::RoundFailure)
            }
            Decision::Success(predicate) => {
                // commit changes to component states
                cu.proto_components.clear();
                let (logger, proto_components) = cu.logger_and_protocol_components();
                proto_components.extend(
                    // "flatten" branching components, committing the speculation
                    // consistent with the predicate decided upon.
                    branching_proto_components
                        .into_iter()
                        .map(|(cid, bpc)| (cid, bpc.collapse_with(logger, &predicate))),
                );
                // commit changes to ports and id_manager
                log!(
                    logger,
                    "End round with (updated) component states {:?}",
                    proto_components.keys()
                );
                cu.ips = rctx.ips;
                // consume native
                let round_ok = branching_native.collapse_with(cu.logger(), &predicate);
                Ok(Some(round_ok))
            }
        };
        log!(cu.logger(), "Sync round ending! Cleaning up");
        ret
    }

    // Once the synchronous round has been started, this procedure
    // routs and handles payloads, receives control messages from neighboring connectors,
    // checks for timeout, and aggregates solutions until a distributed decision is reached.
    // The decision is either a solution (success case), or a distributed timeout rollback (failure case)
    // The final possible outcome is an unrecoverable error, which results from some fundamental misbehavior,
    // a network channel breaking, etc.
    fn sync_reach_decision(
        cu: &mut impl CuUndecided,
        comm: &mut ConnectorCommunication,
        branching_native: &mut BranchingNative,
        branching_proto_components: &mut HashMap<ComponentId, BranchingProtoComponent>,
        rctx: &mut RoundCtx,
    ) -> Result<Decision, UnrecoverableSyncError> {
        // The round is in progress, and now its just a matter of arriving at a decision.
        let mut already_requested_failure = false;
        if branching_native.branches.is_empty() {
            // An unsatisfiable native is the easiest way to detect failure
            log!(cu.logger(), "Native starts with no branches! Failure!");
            match comm.neighborhood.parent {
                Some(parent) => {
                    if already_requested_failure.replace_with_true() {
                        Self::request_failure(cu, comm, parent)?
                    } else {
                        log!(cu.logger(), "Already requested failure");
                    }
                }
                None => {
                    log!(cu.logger(), "No parent. Deciding on failure");
                    return Ok(Decision::Failure);
                }
            }
        }

        // Create a small set of "workspace" hashmaps, to be passed by-reference into various calls.
        // This is an optimization, avoiding repeated allocation.
        let mut pcb_temps_owner = <[HashMap<Predicate, ProtoComponentBranch>; 3]>::default();
        let mut pcb_temps = MapTempsGuard(&mut pcb_temps_owner);
        let mut bn_temp_owner = <HashMap<Predicate, NativeBranch>>::default();

        // first, we run every protocol component to their sync blocker.
        // Afterwards we establish a loop invariant: no new decision can be reached
        // without handling messages in the buffer or arriving from the network
        log!(
            cu.logger(),
            "Running all {} proto components to their sync blocker...",
            branching_proto_components.len()
        );
        for (&proto_component_id, proto_component) in branching_proto_components.iter_mut() {
            let BranchingProtoComponent { branches } = proto_component;
            // must reborrow to constrain the lifetime of pcb_temps to inside the loop
            let (swap, pcb_temps) = pcb_temps.reborrow().split_first_mut();
            let (blocked, _pcb_temps) = pcb_temps.split_first_mut();
            // initially, no protocol components have .ended==true
            // drain from branches --> blocked
            let cd = CyclicDrainer { input: branches, swap: swap.0, output: blocked.0 };
            BranchingProtoComponent::drain_branches_to_blocked(cd, cu, rctx, proto_component_id)?;
            // swap the blocked branches back
            std::mem::swap(blocked.0, branches);
            if branches.is_empty() {
                log!(cu.logger(), "{:?} has become inconsistent!", proto_component_id);
                if let Some(parent) = comm.neighborhood.parent {
                    if already_requested_failure.replace_with_true() {
                        Self::request_failure(cu, comm, parent)?
                    } else {
                        log!(cu.logger(), "Already requested failure");
                    }
                } else {
                    log!(cu.logger(), "As the leader, deciding on timeout");
                    return Ok(Decision::Failure);
                }
            }
        }
        log!(cu.logger(), "All proto components are blocked");
        // ...invariant established!

        log!(cu.logger(), "Entering decision loop...");
        comm.endpoint_manager.undelay_all();
        'undecided: loop {
            // handle all buffered messages, sending them through endpoints / feeding them to components
            log!(cu.logger(), "Decision loop! have {} messages to recv", rctx.payload_inbox.len());
            while let Some((getter, send_payload_msg)) = rctx.getter_pop() {
                let getter_info = rctx.ips.port_info.map.get(&getter).unwrap();
                let cid = getter_info.owner; // the id of the component owning `getter` port
                assert_eq!(Getter, getter_info.polarity); // sanity check
                log!(
                    cu.logger(),
                    "Routing msg {:?} to {:?} via {:?}",
                    &send_payload_msg,
                    getter,
                    &getter_info.route
                );
                match getter_info.route {
                    Route::UdpEndpoint { index } => {
                        // this is a message sent over the network through a UDP endpoint
                        let udp_endpoint_ext =
                            &mut comm.endpoint_manager.udp_endpoint_store.endpoint_exts[index];
                        let SendPayloadMsg { predicate, payload } = send_payload_msg;
                        log!(cu.logger(), "Delivering to udp endpoint index={}", index);
                        // UDP mediator messages are buffered until the end of the round,
                        // because they are still speculative
                        udp_endpoint_ext.outgoing_payloads.insert(predicate, payload);
                    }
                    Route::NetEndpoint { index } => {
                        // this is a message sent over the network as a control message
                        let msg = Msg::CommMsg(CommMsg {
                            round_index: comm.round_index,
                            contents: CommMsgContents::SendPayload(send_payload_msg),
                        });
                        // actually send the message now
                        comm.endpoint_manager.send_to_comms(index, &msg)?;
                    }
                    Route::LocalComponent if cid == cu.native_component_id() => branching_native
                        .feed_msg(
                            cu,
                            rctx,
                            getter,
                            &send_payload_msg,
                            MapTempGuard::new(&mut bn_temp_owner),
                        ),
                    Route::LocalComponent => {
                        // some other component_id routed locally. must be a protocol component!
                        if let Some(branching_component) = branching_proto_components.get_mut(&cid)
                        {
                            // The recipient component is still running!
                            // Feed it this message AND run it again until all branches are blocked
                            branching_component.feed_msg(
                                cu,
                                rctx,
                                cid,
                                getter,
                                &send_payload_msg,
                                pcb_temps.reborrow(),
                            )?;
                            if branching_component.branches.is_empty() {
                                // A solution is impossible! this component has zero branches
                                // Initiate a rollback
                                log!(cu.logger(), "{:?} has become inconsistent!", cid);
                                if let Some(parent) = comm.neighborhood.parent {
                                    if already_requested_failure.replace_with_true() {
                                        Self::request_failure(cu, comm, parent)?
                                    } else {
                                        log!(cu.logger(), "Already requested failure");
                                    }
                                } else {
                                    log!(cu.logger(), "As the leader, deciding on timeout");
                                    return Ok(Decision::Failure);
                                }
                            }
                        } else {
                            // This case occurs when the component owning `getter` has exited,
                            // but the putter is still running (and sent this message).
                            // we drop the message on the floor, because it cannot be involved
                            // in a solution (requires sending a message over a dead channel!).
                            log!(
                                cu.logger(),
                                "Delivery to getter {:?} msg {:?} failed because {:?} isn't here",
                                getter,
                                &send_payload_msg,
                                cid
                            );
                        }
                    }
                }
            }
            // payload buffer is empty.
            // check if we have a solution yet
            log!(cu.logger(), "Check if we have any local decisions...");
            for solution in rctx.solution_storage.iter_new_local_make_old() {
                log!(cu.logger(), "New local decision with solution {:?}...", &solution);
                match comm.neighborhood.parent {
                    Some(parent) => {
                        // Always forward connector-local solutions to my parent
                        // AS they are moved from new->old in solution storage.
                        log!(cu.logger(), "Forwarding to my parent {:?}", parent);
                        let suggestion = Decision::Success(solution);
                        let msg = Msg::CommMsg(CommMsg {
                            round_index: comm.round_index,
                            contents: CommMsgContents::CommCtrl(CommCtrlMsg::Suggest {
                                suggestion,
                            }),
                        });
                        comm.endpoint_manager.send_to_comms(parent, &msg)?;
                    }
                    None => {
                        log!(cu.logger(), "No parent. Deciding on solution {:?}", &solution);
                        return Ok(Decision::Success(solution));
                    }
                }
            }

            // stuck! make progress by receiving a msg
            // try recv ONE message arriving through an endpoint
            log!(cu.logger(), "No decision yet. Let's recv an endpoint msg...");
            {
                // This is the first call that may block the thread!
                // Until a message arrives over the network, no new solutions are possible.
                let (net_index, comm_ctrl_msg): (usize, CommCtrlMsg) =
                    match comm.endpoint_manager.try_recv_any_comms(cu, rctx, comm.round_index)? {
                        CommRecvOk::NewControlMsg { net_index, msg } => (net_index, msg),
                        CommRecvOk::NewPayloadMsgs => {
                            // 1+ speculative payloads have been buffered
                            // but no other control messages that require further handling
                            // restart the loop to process the messages before blocking
                            continue 'undecided;
                        }
                        CommRecvOk::TimeoutWithoutNew => {
                            log!(cu.logger(), "Reached user-defined deadling without decision...");
                            if let Some(parent) = comm.neighborhood.parent {
                                if already_requested_failure.replace_with_true() {
                                    Self::request_failure(cu, comm, parent)?
                                } else {
                                    log!(cu.logger(), "Already requested failure");
                                }
                            } else {
                                log!(cu.logger(), "As the leader, deciding on timeout");
                                return Ok(Decision::Failure);
                            }
                            // disable future timeout events! our request for failure has been sent
                            // all we can do at this point is wait.
                            rctx.deadline = None;
                            continue 'undecided;
                        }
                    };
                // We received a control message that requires further action
                log!(
                    cu.logger(),
                    "Received from endpoint {} ctrl msg {:?}",
                    net_index,
                    &comm_ctrl_msg
                );
                match comm_ctrl_msg {
                    CommCtrlMsg::Suggest { suggestion } => {
                        // We receive the solution of another connector (part of the decision process)
                        // (only accept this through a child endpoint)
                        if comm.neighborhood.children.contains(&net_index) {
                            match suggestion {
                                Decision::Success(predicate) => {
                                    // child solution contributes to local solution
                                    log!(cu.logger(), "Child provided solution {:?}", &predicate);
                                    let subtree_id = SubtreeId::NetEndpoint { index: net_index };
                                    rctx.solution_storage.submit_and_digest_subtree_solution(
                                        cu, subtree_id, predicate,
                                    );
                                }
                                Decision::Failure => {
                                    // Someone timed out! propagate this to parent or decide
                                    match comm.neighborhood.parent {
                                        None => {
                                            log!(cu.logger(), "I decide on my child's failure");
                                            break 'undecided Ok(Decision::Failure);
                                        }
                                        Some(parent) => {
                                            log!(cu.logger(), "Forwarding failure through my parent endpoint {:?}", parent);
                                            if already_requested_failure.replace_with_true() {
                                                Self::request_failure(cu, comm, parent)?
                                            } else {
                                                log!(cu.logger(), "Already requested failure");
                                            }
                                        }
                                    }
                                }
                            }
                        } else {
                            // Unreachable if all connectors are playing by the rules.
                            // Silently ignored instead of causing panic to make the
                            // runtime more robust against network fuzz
                            log!(
                                cu.logger(),
                                "Discarding suggestion {:?} from non-child endpoint idx {:?}",
                                &suggestion,
                                net_index
                            );
                        }
                    }
                    CommCtrlMsg::Announce { decision } => {
                        // Apparently this round is over! A decision has been reached
                        if Some(net_index) == comm.neighborhood.parent {
                            // We accept the decision because it comes from our parent.
                            // end this loop, and and the synchronous round
                            return Ok(decision);
                        } else {
                            // Again, unreachable if all connectors are playing by the rules
                            log!(
                                cu.logger(),
                                "Discarding announcement {:?} from non-parent endpoint idx {:?}",
                                &decision,
                                net_index
                            );
                        }
                    }
                }
            }
            log!(cu.logger(), "Endpoint msg recv done");
        }
    }

    // Send a failure request to my parent in the consensus tree
    fn request_failure(
        cu: &mut impl CuUndecided,
        comm: &mut ConnectorCommunication,
        parent: usize,
    ) -> Result<(), UnrecoverableSyncError> {
        log!(cu.logger(), "Forwarding to my parent {:?}", parent);
        let suggestion = Decision::Failure;
        let msg = Msg::CommMsg(CommMsg {
            round_index: comm.round_index,
            contents: CommMsgContents::CommCtrl(CommCtrlMsg::Suggest { suggestion }),
        });
        comm.endpoint_manager.send_to_comms(parent, &msg)
    }
}
impl NativeBranch {
    fn is_ended(&self) -> bool {
        self.to_get.is_empty()
    }
}
impl BranchingNative {
    // Feed the given payload to the native component
    // May result in discovering new component solutions,
    // or fork speculative branches if the message's predicate
    // is MORE SPECIFIC than the branches of the native
    fn feed_msg(
        &mut self,
        cu: &mut impl CuUndecided,
        rctx: &mut RoundCtx,
        getter: PortId,
        send_payload_msg: &SendPayloadMsg,
        bn_temp: MapTempGuard<'_, Predicate, NativeBranch>,
    ) {
        log!(cu.logger(), "feeding native getter {:?} {:?}", getter, &send_payload_msg);
        assert_eq!(Getter, rctx.ips.port_info.map.get(&getter).unwrap().polarity);
        let mut draining = bn_temp;
        let finished = &mut self.branches;
        std::mem::swap(draining.0, finished);
        // Visit all native's branches, and feed those whose current predicates are
        // consistent with that of the received message.
        for (predicate, mut branch) in draining.drain() {
            log!(cu.logger(), "visiting native branch {:?} with {:?}", &branch, &predicate);
            let var = rctx.ips.port_info.spec_var_for(getter);
            if predicate.query(var) != Some(SpecVal::FIRING) {
                // optimization. Don't bother trying this branch,
                // because the resulting branch would have an inconsistent predicate.
                // the existing branch asserts the getter port is SILENT
                log!(
                    cu.logger(),
                    "skipping branch with {:?} that doesn't want the message (fastpath)",
                    &predicate
                );
                Self::insert_branch_merging(finished, predicate, branch);
                continue;
            }
            // Define a little helper closure over `rctx`
            // for feeding the given branch this new payload,
            // and submitting any resulting solutions
            let mut feed_branch = |branch: &mut NativeBranch, predicate: &Predicate| {
                // This branch notes the getter port as "gotten"
                branch.to_get.remove(&getter);
                if let Some(was) = branch.gotten.insert(getter, send_payload_msg.payload.clone()) {
                    // Sanity check. Payload mapping (Predicate,Port) should be unique each round
                    assert_eq!(&was, &send_payload_msg.payload);
                }
                if branch.is_ended() {
                    // That was the last message the branch was awaiting!
                    // Submitting new component solution.
                    log!(
                        cu.logger(),
                        "new native solution with {:?} is_ended() with gotten {:?}",
                        &predicate,
                        &branch.gotten
                    );
                    let subtree_id = SubtreeId::LocalComponent(cu.native_component_id());
                    rctx.solution_storage.submit_and_digest_subtree_solution(
                        cu,
                        subtree_id,
                        predicate.clone(),
                    );
                } else {
                    // This branch still has ports awaiting their messages
                    log!(
                        cu.logger(),
                        "Fed native {:?} still has to_get {:?}",
                        &predicate,
                        &branch.to_get
                    );
                }
            };
            use AssignmentUnionResult as Aur;
            match predicate.assignment_union(&send_payload_msg.predicate) {
                Aur::Nonexistant => {
                    // The predicates of this branch and the payload are incompatible
                    // retain this branch as-is
                    log!(
                        cu.logger(),
                        "skipping branch with {:?} that doesn't want the message (slowpath)",
                        &predicate
                    );
                    Self::insert_branch_merging(finished, predicate, branch);
                }
                Aur::Equivalent | Aur::FormerNotLatter => {
                    // The branch's existing predicate "covers" (is at least as specific)
                    // as that of the payload. Can feed this branch the message without altering
                    // the branch predicate.
                    feed_branch(&mut branch, &predicate);
                    log!(cu.logger(), "branch pred covers it! Accept the msg");
                    Self::insert_branch_merging(finished, predicate, branch);
                }
                Aur::LatterNotFormer => {
                    // The predicates of branch and payload are compatible,
                    // but that of the payload is strictly more specific than that of the latter.
                    // FORK the branch, feed the fork the message, and give it the payload's predicate.
                    let mut branch2 = branch.clone();
                    let predicate2 = send_payload_msg.predicate.clone();
                    feed_branch(&mut branch2, &predicate2);
                    log!(
                        cu.logger(),
                        "payload pred {:?} covers branch pred {:?}",
                        &predicate2,
                        &predicate
                    );
                    Self::insert_branch_merging(finished, predicate, branch);
                    Self::insert_branch_merging(finished, predicate2, branch2);
                }
                Aur::New(predicate2) => {
                    // The predicates of branch and payload are compatible,
                    // but their union is some new predicate (both preds assign something new).
                    // FORK the branch, feed the fork the message, and give it the new predicate.
                    let mut branch2 = branch.clone();
                    feed_branch(&mut branch2, &predicate2);
                    log!(
                        cu.logger(),
                        "new subsuming pred created {:?}. forking and feeding",
                        &predicate2
                    );
                    Self::insert_branch_merging(finished, predicate, branch);
                    Self::insert_branch_merging(finished, predicate2, branch2);
                }
            }
        }
    }

    // Insert a new speculate branch into the given storage,
    // MERGING it with an existing branch if their predicate keys clash.
    fn insert_branch_merging(
        branches: &mut HashMap<Predicate, NativeBranch>,
        predicate: Predicate,
        mut branch: NativeBranch,
    ) {
        let e = branches.entry(predicate);
        use std::collections::hash_map::Entry;
        match e {
            Entry::Vacant(ev) => {
                // no existing branch present. We insert it no problem. (The most common case)
                ev.insert(branch);
            }
            Entry::Occupied(mut eo) => {
                // Oh dear, there is already a branch with this predicate.
                // Rather than choosing either branch, we MERGE them.
                // This means taking the UNION of their .gotten and the INTERSECTION of their .to_get
                let old = eo.get_mut();
                for (k, v) in branch.gotten.drain() {
                    if old.gotten.insert(k, v).is_none() {
                        // added a gotten element in `branch` not already in `old`
                        old.to_get.remove(&k);
                    }
                }
            }
        }
    }

    // Given the predicate for the round's solution, collapse this
    // branching native to an ended branch whose predicate is consistent with it.
    // return as `RoundEndedNative` the result of a native completing successful round
    fn collapse_with(
        self,
        logger: &mut dyn Logger,
        solution_predicate: &Predicate,
    ) -> RoundEndedNative {
        log!(
            logger,
            "Collapsing native with {} branch preds {:?}",
            self.branches.len(),
            self.branches.keys()
        );
        for (branch_predicate, branch) in self.branches {
            log!(
                logger,
                "Considering native branch {:?} with to_get {:?} gotten {:?}",
                &branch_predicate,
                &branch.to_get,
                &branch.gotten
            );
            if branch.is_ended() && branch_predicate.assigns_subset(solution_predicate) {
                let NativeBranch { index, gotten, .. } = branch;
                log!(logger, "Collapsed native has gotten {:?}", &gotten);
                return RoundEndedNative { batch_index: index, gotten };
            }
        }
        log!(logger, "Native had no branches matching pred {:?}", solution_predicate);
        panic!("Native had no branches matching pred {:?}", solution_predicate);
    }
}
impl BranchingProtoComponent {
    // Create a singleton-branch branching protocol component as
    // speculation begins, with the given protocol state.
    fn initial(state: ComponentState) -> Self {
        let branch = ProtoComponentBranch { state, inner: Default::default(), ended: false };
        Self { branches: hashmap! { Predicate::default() => branch } }
    }

    // run all the given branches (cd.input) to their SyncBlocker,
    // populating cd.output by cyclically draining "input" -> "cd."input" / cd.output.
    // (to prevent concurrent r/w of one structure, we realize "input" as cd.input for reading and cd.swap for writing)
    // This procedure might lose branches, and it might create new branches.
    fn drain_branches_to_blocked(
        cd: CyclicDrainer<Predicate, ProtoComponentBranch>,
        cu: &mut impl CuUndecided,
        rctx: &mut RoundCtx,
        proto_component_id: ComponentId,
    ) -> Result<(), UnrecoverableSyncError> {
        // let CyclicDrainer { input, swap, output } = cd;
        while !cd.input.is_empty() {
            'branch_iter: for (mut predicate, mut branch) in cd.input.drain() {
                let mut ctx = SyncProtoContext {
                    rctx,
                    predicate: &predicate,
                    branch_inner: &mut branch.inner,
                };
                // Run this component's state to the next syncblocker for handling
                let blocker = branch.state.sync_run(&mut ctx, cu.proto_description());
                log!(
                    cu.logger(),
                    "Proto component with id {:?} branch with pred {:?} hit blocker {:?}",
                    proto_component_id,
                    &predicate,
                    &blocker,
                );
                use SyncBlocker as B;
                match blocker {
                    B::Inconsistent => drop((predicate, branch)), // EXPLICIT inconsistency
                    B::CouldntReadMsg(port) => {
                        // sanity check: `CouldntReadMsg` returned IFF the message is unavailable
                        assert!(!branch.inner.inbox.contains_key(&port));
                        // This branch hit a proper blocker: progress awaits the receipt of some message. Exit the cycle.
                        Self::insert_branch_merging(cd.output, predicate, branch);
                    }
                    B::CouldntCheckFiring(port) => {
                        // sanity check: `CouldntCheckFiring` returned IFF the variable is speculatively assigned
                        let var = rctx.ips.port_info.spec_var_for(port);
                        assert!(predicate.query(var).is_none());
                        // speculate on the two possible values of `var`. Schedule both branches to be rerun.

                        Self::insert_branch_merging(
                            cd.swap,
                            predicate.clone().inserted(var, SpecVal::SILENT),
                            branch.clone(),
                        );
                        Self::insert_branch_merging(
                            cd.swap,
                            predicate.inserted(var, SpecVal::FIRING),
                            branch,
                        );
                    }
                    B::PutMsg(putter, payload) => {
                        // sanity check: The given port indeed has `Putter` polarity
                        assert_eq!(Putter, rctx.ips.port_info.map.get(&putter).unwrap().polarity);
                        // assign FIRING to this port's associated firing variable
                        let var = rctx.ips.port_info.spec_var_for(putter);
                        let was = predicate.assigned.insert(var, SpecVal::FIRING);
                        if was == Some(SpecVal::SILENT) {
                            // Discard the branch, as it clearly has contradictory requirements for this value.
                            log!(cu.logger(), "Proto component {:?} tried to PUT on port {:?} when pred said var {:?}==Some(false). inconsistent!",
                            proto_component_id, putter, var);
                            drop((predicate, branch));
                        } else {
                            // Note that this port has put this round,
                            // and assert that this isn't its 2nd time putting this round (otheriwse PDL programming error)
                            assert!(branch.inner.did_put_or_get.insert(putter));
                            log!(cu.logger(), "Proto component {:?} with pred {:?} putting payload {:?} on port {:?} (using var {:?})",
                            proto_component_id, &predicate, &payload, putter, var);
                            // Send the given payload (by buffering it).
                            let msg = SendPayloadMsg { predicate: predicate.clone(), payload };
                            rctx.putter_push(cu, putter, msg);
                            // Branch can still make progress. Schedule to be rerun

                            Self::insert_branch_merging(cd.swap, predicate, branch);
                        }
                    }
                    B::SyncBlockEnd => {
                        // This branch reached the end of it's synchronous block
                        // assign all variables of owned ports that DIDN'T fire to SILENT
                        for port in rctx.ips.port_info.ports_owned_by(proto_component_id) {
                            let var = rctx.ips.port_info.spec_var_for(*port);
                            let actually_exchanged = branch.inner.did_put_or_get.contains(port);
                            let val = *predicate.assigned.entry(var).or_insert(SpecVal::SILENT);
                            let speculated_to_fire = val == SpecVal::FIRING;
                            if actually_exchanged != speculated_to_fire {
                                log!(cu.logger(), "Inconsistent wrt. port {:?} var {:?} val {:?} actually_exchanged={}, speculated_to_fire={}",
                                port, var, val, actually_exchanged, speculated_to_fire);
                                // IMPLICIT inconsistency
                                drop((predicate, branch));
                                continue 'branch_iter;
                            }
                        }
                        // submit solution for this component
                        let subtree_id = SubtreeId::LocalComponent(proto_component_id);
                        rctx.solution_storage.submit_and_digest_subtree_solution(
                            cu,
                            subtree_id,
                            predicate.clone(),
                        );
                        branch.ended = true;
                        // This branch exits the cyclic drain
                        Self::insert_branch_merging(cd.output, predicate, branch);
                    }
                }
            }
            std::mem::swap(cd.input, cd.swap);
        }
        Ok(())
    }

    // Feed this branching protocol component the given message, and
    // then run all branches until they are once again blocked.
    fn feed_msg(
        &mut self,
        cu: &mut impl CuUndecided,
        rctx: &mut RoundCtx,
        proto_component_id: ComponentId,
        getter: PortId,
        send_payload_msg: &SendPayloadMsg,
        pcb_temps: MapTempsGuard<'_, Predicate, ProtoComponentBranch>,
    ) -> Result<(), UnrecoverableSyncError> {
        log!(
            cu.logger(),
            "feeding proto component {:?} getter {:?} {:?}",
            proto_component_id,
            getter,
            &send_payload_msg
        );
        let (mut unblocked, pcb_temps) = pcb_temps.split_first_mut();
        let (mut blocked, pcb_temps) = pcb_temps.split_first_mut();
        // partition drain from self.branches -> {unblocked, blocked} (not cyclic)
        log!(cu.logger(), "visiting {} blocked branches...", self.branches.len());
        for (predicate, mut branch) in self.branches.drain() {
            if branch.ended {
                log!(cu.logger(), "Skipping ended branch with {:?}", &predicate);
                Self::insert_branch_merging(&mut blocked, predicate, branch);
                continue;
            }
            use AssignmentUnionResult as Aur;
            log!(cu.logger(), "visiting branch with pred {:?}", &predicate);
            // We give each branch a chance to receive this message,
            // those that do are maybe UNBLOCKED, and all others remain BLOCKED.
            match predicate.assignment_union(&send_payload_msg.predicate) {
                Aur::Nonexistant => {
                    // this branch does not receive the message. categorize into blocked.
                    log!(cu.logger(), "skipping branch");
                    Self::insert_branch_merging(&mut blocked, predicate, branch);
                }
                Aur::Equivalent | Aur::FormerNotLatter => {
                    // retain the existing predicate, but add this payload
                    log!(cu.logger(), "feeding this branch without altering its predicate");
                    branch.feed_msg(getter, send_payload_msg.payload.clone());
                    // this branch does receive the message. categorize into unblocked.
                    Self::insert_branch_merging(&mut unblocked, predicate, branch);
                }
                Aur::LatterNotFormer => {
                    // fork branch, give fork the message and payload predicate. original branch untouched
                    log!(cu.logger(), "Forking this branch, giving it the predicate of the msg");
                    let mut branch2 = branch.clone();
                    let predicate2 = send_payload_msg.predicate.clone();
                    branch2.feed_msg(getter, send_payload_msg.payload.clone());
                    // the branch that receives the message is unblocked, the original one is blocked
                    Self::insert_branch_merging(&mut blocked, predicate, branch);
                    Self::insert_branch_merging(&mut unblocked, predicate2, branch2);
                }
                Aur::New(predicate2) => {
                    // fork branch, give fork the message and the new predicate. original branch untouched
                    log!(cu.logger(), "Forking this branch with new predicate {:?}", &predicate2);
                    let mut branch2 = branch.clone();
                    branch2.feed_msg(getter, send_payload_msg.payload.clone());
                    // the branch that receives the message is unblocked, the original one is blocked
                    Self::insert_branch_merging(&mut blocked, predicate, branch);
                    Self::insert_branch_merging(&mut unblocked, predicate2, branch2);
                }
            }
        }
        log!(cu.logger(), "blocked {:?} unblocked {:?}", blocked.len(), unblocked.len());
        // drain from unblocked --> blocked
        let (swap, _pcb_temps) = pcb_temps.split_first_mut(); // peel off ONE temp storage map
        let cd = CyclicDrainer { input: unblocked.0, swap: swap.0, output: blocked.0 };
        BranchingProtoComponent::drain_branches_to_blocked(cd, cu, rctx, proto_component_id)?;
        // swap the blocked branches back
        std::mem::swap(blocked.0, &mut self.branches);
        log!(cu.logger(), "component settles down with branches: {:?}", self.branches.keys());
        Ok(())
    }

    // Insert a new speculate branch into the given storage,
    // MERGING it with an existing branch if their predicate keys clash.
    fn insert_branch_merging(
        branches: &mut HashMap<Predicate, ProtoComponentBranch>,
        predicate: Predicate,
        mut branch: ProtoComponentBranch,
    ) {
        let e = branches.entry(predicate);
        use std::collections::hash_map::Entry;
        match e {
            Entry::Vacant(ev) => {
                // no existing branch present. We insert it no problem. (The most common case)
                ev.insert(branch);
            }
            Entry::Occupied(mut eo) => {
                // Oh dear, there is already a branch with this predicate.
                // Rather than choosing either branch, we MERGE them.
                // This means keeping the existing one in-place, and giving it the UNION of the inboxes
                let old = eo.get_mut();
                for (k, v) in branch.inner.inbox.drain() {
                    old.inner.inbox.insert(k, v);
                }
            }
        }
    }

    // Given the predicate for the round's solution, collapse this
    // branching native to an ended branch whose predicate is consistent with it.
    fn collapse_with(
        self,
        logger: &mut dyn Logger,
        solution_predicate: &Predicate,
    ) -> ComponentState {
        let BranchingProtoComponent { branches } = self;
        for (branch_predicate, branch) in branches {
            if branch.ended && branch_predicate.assigns_subset(solution_predicate) {
                let ProtoComponentBranch { state, .. } = branch;
                return state;
            }
        }
        log!(logger, "ProtoComponent had no branches matching pred {:?}", solution_predicate);
        panic!("ProtoComponent had no branches matching pred {:?}", solution_predicate);
    }
}
impl ProtoComponentBranch {
    // Feed this branch received message.
    // It's safe to receive the same message repeatedly,
    // but if we receive a message with different contents,
    // it's a sign something has gone wrong! keys of type (port, round, predicate)
    // should always map to at most one message value!
    fn feed_msg(&mut self, getter: PortId, payload: Payload) {
        let e = self.inner.inbox.entry(getter);
        use std::collections::hash_map::Entry;
        match e {
            Entry::Vacant(ev) => {
                // new message
                ev.insert(payload);
            }
            Entry::Occupied(eo) => {
                // redundant recv. can happen as a result of a
                // component A having two branches X and Y related by
                assert_eq!(eo.get(), &payload);
            }
        }
    }
}
impl SolutionStorage {
    // Create a new solution storage, to manage the local solutions for
    // this connector and all of it's children (subtrees) in the solution tree.
    fn new(subtree_ids: impl Iterator<Item = SubtreeId>) -> Self {
        // For easy iteration, we store this SubtreeId => {Predicate}
        // structure instead as a pair of structures: a vector of predicate sets,
        // and a subtree_id-to-index lookup map
        let mut subtree_id_to_index: HashMap<SubtreeId, usize> = Default::default();
        let mut subtree_solutions = vec![];
        for id in subtree_ids {
            subtree_id_to_index.insert(id, subtree_solutions.len());
            subtree_solutions.push(Default::default())
        }
        // new_local U old_local represents the solutions of this connector itself:
        // namely, those that can be created from the union of one element from each child's solution set.
        // The difference between new and old is that new stores those NOT YET sent over the network
        // to this connector's parent in the solution tree.
        // invariant: old_local and new_local have an empty intersection
        Self {
            subtree_solutions,
            subtree_id_to_index,
            old_local: Default::default(),
            new_local: Default::default(),
        }
    }
    // drain old_local to new_local, visiting all new additions to old_local
    pub(crate) fn iter_new_local_make_old(&mut self) -> impl Iterator<Item = Predicate> + '_ {
        let Self { old_local, new_local, .. } = self;
        new_local.drain().map(move |local| {
            // rely on invariant: empty intersection between old and new local sets
            assert!(old_local.insert(local.clone()));
            local
        })
    }
    // insert a solution for the given subtree ID,
    // AND update new_local to include any solutions that become
    // possible as a result of this new addition
    pub(crate) fn submit_and_digest_subtree_solution(
        &mut self,
        cu: &mut impl CuUndecided,
        subtree_id: SubtreeId,
        predicate: Predicate,
    ) {
        log!(cu.logger(), "++ new component solution {:?} {:?}", subtree_id, &predicate);
        let Self { subtree_solutions, new_local, old_local, subtree_id_to_index } = self;
        let index = subtree_id_to_index[&subtree_id];
        let was_new = subtree_solutions[index].insert(predicate.clone());
        if was_new {
            // This is a newly-added solution! update new_local
            // consider ALL consistent combinations of one element from each solution set
            // to our right or left in the solution-set vector
            // but with THIS PARTICULAR predicate from our own index.
            let left = 0..index;
            let right = (index + 1)..subtree_solutions.len();
            // iterator over SETS of solutions, one for every component except `subtree_id` (me)
            let set_visitor = left.chain(right).map(|index| &subtree_solutions[index]);
            // Recursively enumerate all solutions matching the description above,
            Self::elaborate_into_new_local_rec(cu, predicate, set_visitor, old_local, new_local);
        }
    }

    // Recursively build local solutions for this connector,
    // see `submit_and_digest_subtree_solution`
    fn elaborate_into_new_local_rec<'a, 'b>(
        cu: &mut impl CuUndecided,
        partial: Predicate,
        mut set_visitor: impl Iterator<Item = &'b HashSet<Predicate>> + Clone,
        old_local: &'b HashSet<Predicate>,
        new_local: &'a mut HashSet<Predicate>,
    ) {
        if let Some(set) = set_visitor.next() {
            // incomplete solution. keep recursively creating combined solutions
            for pred in set.iter() {
                if let Some(elaborated) = pred.union_with(&partial) {
                    Self::elaborate_into_new_local_rec(
                        cu,
                        elaborated,
                        set_visitor.clone(),
                        old_local,
                        new_local,
                    )
                }
            }
        } else {
            // recursive stop condition. This is a solution for this connector...
            if !old_local.contains(&partial) {
                // ... and it hasn't been found before
                log!(cu.logger(), "storing NEW LOCAL SOLUTION {:?}", &partial);
                new_local.insert(partial);
            }
        }
    }
}
impl NonsyncProtoContext<'_> {
    // Facilitates callback from the component to the connector runtime,
    // creating a new component and changing the given port's ownership to that
    // of the new component.
    pub(crate) fn new_component(&mut self, moved_ports: HashSet<PortId>, state: ComponentState) {
        // Sanity check! The moved ports are owned by this component to begin with
        for port in moved_ports.iter() {
            assert_eq!(self.proto_component_id, self.ips.port_info.map.get(port).unwrap().owner);
        }
        // Create the new component, and schedule it to be run
        let new_cid = self.ips.id_manager.new_component_id();
        log!(
            self.logger,
            "Component {:?} added new component {:?} with state {:?}, moving ports {:?}",
            self.proto_component_id,
            new_cid,
            &state,
            &moved_ports
        );
        self.unrun_components.push((new_cid, state));
        // Update the ownership of the moved ports
        for port in moved_ports.iter() {
            self.ips.port_info.map.get_mut(port).unwrap().owner = new_cid;
        }
        if let Some(set) = self.ips.port_info.owned.get_mut(&self.proto_component_id) {
            set.retain(|x| !moved_ports.contains(x));
        }
        self.ips.port_info.owned.insert(new_cid, moved_ports.clone());
    }

    // Facilitates callback from the component to the connector runtime,
    // creating a new port-pair connected by an memory channel
    pub(crate) fn new_port_pair(&mut self) -> [PortId; 2] {
        // adds two new associated ports, related to each other, and exposed to the proto component
        let mut new_cid_fn = || self.ips.id_manager.new_port_id();
        let [o, i] = [new_cid_fn(), new_cid_fn()];
        self.ips.port_info.map.insert(
            o,
            PortInfo {
                route: Route::LocalComponent,
                peer: Some(i),
                polarity: Putter,
                owner: self.proto_component_id,
            },
        );
        self.ips.port_info.map.insert(
            i,
            PortInfo {
                route: Route::LocalComponent,
                peer: Some(o),
                polarity: Getter,
                owner: self.proto_component_id,
            },
        );
        self.ips
            .port_info
            .owned
            .entry(self.proto_component_id)
            .or_default()
            .extend([o, i].iter().copied());
        log!(
            self.logger,
            "Component {:?} port pair (out->in) {:?} -> {:?}",
            self.proto_component_id,
            o,
            i
        );
        [o, i]
    }
}
impl SyncProtoContext<'_> {
    // The component calls the runtime back, inspecting whether it's associated
    // preidcate has already determined a (speculative) value for the given port's firing variable.
    pub(crate) fn is_firing(&mut self, port: PortId) -> Option<bool> {
        let var = self.rctx.ips.port_info.spec_var_for(port);
        self.predicate.query(var).map(SpecVal::is_firing)
    }

    pub(crate) fn did_put_or_get(&mut self, port: PortId) -> bool {
        self.branch_inner.did_put_or_get.contains(&port)
    }

    // The component calls the runtime back, trying to inspect a port's message
    pub(crate) fn read_msg(&mut self, port: PortId) -> Option<&Payload> {
        let maybe_msg = self.branch_inner.inbox.get(&port);
        if maybe_msg.is_some() {
            // Make a note that this component has received
            // this port's message 1+ times this round
            self.branch_inner.did_put_or_get.insert(port);
        }
        maybe_msg
    }
}