Files
@ c62d6f0cc48a
Branch filter:
Location: CSY/reowolf/src/runtime2/runtime.rs
c62d6f0cc48a
11.4 KiB
application/rls-services+xml
WIP on implementing (figuring out) tcp component
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | use std::sync::{Arc, Mutex, Condvar};
use std::sync::atomic::{AtomicU32, AtomicBool, Ordering};
use std::thread;
use std::collections::VecDeque;
use crate::protocol::*;
use crate::runtime2::poll::{PollingThread, PollingThreadHandle};
use crate::runtime2::RtError;
use super::communication::Message;
use super::component::{Component, wake_up_if_sleeping, CompPDL, CompCtx};
use super::store::{ComponentStore, ComponentReservation, QueueDynMpsc, QueueDynProducer};
use super::scheduler::*;
// -----------------------------------------------------------------------------
// Component
// -----------------------------------------------------------------------------
/// Key to a component. Type system somewhat ensures that there can only be one
/// of these. Only with a key one may retrieve privately-accessible memory for
/// a component. Practically just a generational index, like `CompId` is.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) struct CompKey(pub u32);
impl CompKey {
pub(crate) fn downgrade(&self) -> CompId {
return CompId(self.0);
}
}
/// Generational ID of a component.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct CompId(pub u32);
impl CompId {
pub(crate) fn new_invalid() -> CompId {
return CompId(u32::MAX);
}
/// Upgrade component ID to component key. Unsafe because the caller needs
/// to make sure that only one component key can exist at a time (to ensure
/// a component can only be scheduled/executed by one thread).
pub(crate) unsafe fn upgrade(&self) -> CompKey {
return CompKey(self.0);
}
}
/// Handle to a component that is being created.
pub(crate) struct CompReserved {
reservation: ComponentReservation,
}
impl CompReserved {
pub(crate) fn id(&self) -> CompId {
return CompId(self.reservation.index)
}
}
/// Representation of a runtime component. Contains the bookkeeping variables
/// for the schedulers, the publicly accessible fields, and the private fields
/// that should only be accessed by the thread running the component's routine.
pub(crate) struct RuntimeComp {
pub public: CompPublic,
pub component: Box<dyn Component>,
pub ctx: CompCtx,
pub inbox: QueueDynMpsc<Message>,
pub exiting: bool,
}
/// Should contain everything that is accessible in a thread-safe manner
// TODO: Do something about the `num_handles` thing. This needs to be a bit more
// "foolproof" to lighten the mental burden of using the `num_handles`
// variable.
pub(crate) struct CompPublic {
pub sleeping: AtomicBool,
pub num_handles: AtomicU32, // manually modified (!)
inbox: QueueDynProducer<Message>,
}
/// Handle to public part of a component. Would be nice if we could
/// automagically manage the `num_handles` counter. But when it reaches zero we
/// need to manually remove the handle from the runtime. So we just have debug
/// code to make sure this actually happens.
pub(crate) struct CompHandle {
target: *const CompPublic,
id: CompId,
#[cfg(debug_assertions)] decremented: bool,
}
impl CompHandle {
fn new(id: CompId, public: &CompPublic) -> CompHandle {
let handle = CompHandle{
target: public,
id,
#[cfg(debug_assertions)] decremented: false,
};
handle.increment_users();
return handle;
}
pub(crate) fn send_message(&self, runtime: &RuntimeInner, message: Message, try_wake_up: bool) {
self.inbox.push(message);
if try_wake_up {
wake_up_if_sleeping(runtime, self.id, self);
}
}
pub(crate) fn id(&self) -> CompId {
return self.id;
}
fn increment_users(&self) {
let old_count = self.num_handles.fetch_add(1, Ordering::AcqRel);
debug_assert!(old_count > 0); // because we should never be able to retrieve a handle when the component is (being) destroyed
}
/// Returns the `CompKey` to the component if it should be destroyed
pub(crate) fn decrement_users(&mut self) -> Option<CompKey> {
dbg_code!(assert!(!self.decremented, "illegal to 'decrement_users' twice"));
let old_count = self.num_handles.fetch_sub(1, Ordering::AcqRel);
let new_count = old_count - 1;
dbg_code!(self.decremented = true);
if new_count == 0 {
return Some(unsafe{ self.id.upgrade() });
}
return None;
}
}
impl Clone for CompHandle {
fn clone(&self) -> Self {
dbg_code!(assert!(!self.decremented, "illegal to clone after 'decrement_users'"));
self.increment_users();
return CompHandle{
target: self.target,
id: self.id,
#[cfg(debug_assertions)] decremented: false,
};
}
}
impl std::ops::Deref for CompHandle {
type Target = CompPublic;
fn deref(&self) -> &Self::Target {
dbg_code!(assert!(!self.decremented)); // cannot access if control is relinquished
return unsafe{ &*self.target };
}
}
impl Drop for CompHandle {
fn drop(&mut self) {
dbg_code!(assert!(self.decremented, "need call to 'decrement_users' before dropping"));
}
}
// -----------------------------------------------------------------------------
// Runtime
// -----------------------------------------------------------------------------
pub struct Runtime {
pub(crate) inner: Arc<RuntimeInner>,
scheduler_threads: Vec<thread::JoinHandle<()>>,
polling_handle: PollingThreadHandle,
}
impl Runtime {
// TODO: debug_logging should be removed at some point
pub fn new(num_threads: u32, debug_logging: bool, protocol_description: ProtocolDescription) -> Result<Runtime, RtError> {
if num_threads == 0 {
return Err(rt_error!("need at least one thread to create the runtime"));
}
let runtime_inner = Arc::new(RuntimeInner {
protocol: protocol_description,
components: ComponentStore::new(128),
work_queue: Mutex::new(VecDeque::with_capacity(128)),
work_condvar: Condvar::new(),
active_elements: AtomicU32::new(1),
});
let (polling_handle, polling_clients) = rt_error_try!(
PollingThread::new(runtime_inner.clone(), debug_logging),
"failed to build polling thread"
);
let mut scheduler_threads = Vec::with_capacity(num_threads as usize);
for thread_index in 0..num_threads {
let mut scheduler = Scheduler::new(
runtime_inner.clone(), polling_clients.client(),
thread_index, debug_logging
);
let thread_handle = thread::spawn(move || {
scheduler.run();
});
scheduler_threads.push(thread_handle);
}
return Ok(Runtime{
inner: runtime_inner,
scheduler_threads,
polling_handle,
});
}
pub fn create_component(&self, module_name: &[u8], routine_name: &[u8]) -> Result<(), ComponentCreationError> {
use crate::protocol::eval::ValueGroup;
let prompt = self.inner.protocol.new_component(
module_name, routine_name,
ValueGroup::new_stack(Vec::new())
)?;
let reserved = self.inner.start_create_pdl_component();
let ctx = CompCtx::new(&reserved);
let component = Box::new(CompPDL::new(prompt, 0));
let (key, _) = self.inner.finish_create_pdl_component(reserved, component, ctx, false);
self.inner.enqueue_work(key);
return Ok(())
}
}
impl Drop for Runtime {
fn drop(&mut self) {
self.inner.decrement_active_components();
for handle in self.scheduler_threads.drain(..) {
handle.join().expect("join scheduler thread");
}
self.polling_handle.shutdown().expect("shutdown polling thread");
}
}
/// Memory that is maintained by "the runtime". In practice it is maintained by
/// multiple schedulers, and this serves as the common interface to that memory.
pub(crate) struct RuntimeInner {
pub protocol: ProtocolDescription,
components: ComponentStore<RuntimeComp>,
work_queue: Mutex<VecDeque<CompKey>>,
work_condvar: Condvar,
active_elements: AtomicU32, // active components and APIs (i.e. component creators)
}
impl RuntimeInner {
// Scheduling and retrieving work
pub(crate) fn take_work(&self) -> Option<CompKey> {
let mut lock = self.work_queue.lock().unwrap();
while lock.is_empty() && self.active_elements.load(Ordering::Acquire) != 0 {
lock = self.work_condvar.wait(lock).unwrap();
}
// We have work, or the schedulers should exit.
return lock.pop_front();
}
pub(crate) fn enqueue_work(&self, key: CompKey) {
let mut lock = self.work_queue.lock().unwrap();
lock.push_back(key);
self.work_condvar.notify_one();
}
// Creating/destroying components
pub(crate) fn start_create_pdl_component(&self) -> CompReserved {
self.increment_active_components();
let reservation = self.components.reserve();
return CompReserved{ reservation };
}
pub(crate) fn finish_create_pdl_component(
&self, reserved: CompReserved,
component: Box<dyn Component>, mut context: CompCtx, initially_sleeping: bool,
) -> (CompKey, &mut RuntimeComp) {
let inbox_queue = QueueDynMpsc::new(16);
let inbox_producer = inbox_queue.producer();
let _id = reserved.id();
context.id = reserved.id();
let component = RuntimeComp {
public: CompPublic{
sleeping: AtomicBool::new(initially_sleeping),
num_handles: AtomicU32::new(1), // the component itself acts like a handle
inbox: inbox_producer,
},
component,
ctx: context,
inbox: inbox_queue,
exiting: false,
};
let index = self.components.submit(reserved.reservation, component);
debug_assert_eq!(index, _id.0);
let component = self.components.get_mut(index);
return (CompKey(index), component);
}
pub(crate) fn get_component(&self, key: CompKey) -> &mut RuntimeComp {
let component = self.components.get_mut(key.0);
return component;
}
pub(crate) fn get_component_public(&self, id: CompId) -> CompHandle {
let component = self.components.get(id.0);
return CompHandle::new(id, &component.public);
}
pub(crate) fn destroy_component(&self, key: CompKey) {
dbg_code!({
let component = self.get_component(key);
debug_assert!(component.exiting);
debug_assert_eq!(component.public.num_handles.load(Ordering::Acquire), 0);
});
self.decrement_active_components();
self.components.destroy(key.0);
}
// Tracking number of active interfaces and the active components
#[inline]
fn increment_active_components(&self) {
let _old_val = self.active_elements.fetch_add(1, Ordering::AcqRel);
debug_assert!(_old_val > 0); // can only create a component from a API/component, so can never be 0.
}
fn decrement_active_components(&self) {
let old_val = self.active_elements.fetch_sub(1, Ordering::AcqRel);
debug_assert!(old_val > 0); // something wrong with incr/decr logic
let new_val = old_val - 1;
if new_val == 0 {
// Just to be sure, in case the last thing that gets destroyed is an
// API instead of a thread.
let _lock = self.work_queue.lock();
self.work_condvar.notify_all();
}
}
}
|