Files @ c62d6f0cc48a
Branch filter:

Location: CSY/reowolf/src/runtime2/store/queue_mpsc.rs

c62d6f0cc48a 19.9 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
mh
WIP on implementing (figuring out) tcp component
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
use std::sync::atomic::{AtomicU32, Ordering};

use crate::collections::RawArray;
use super::unfair_se_lock::{UnfairSeLock, UnfairSeLockSharedGuard};

/// Multiple-producer single-consumer queue. Generally used in the publicly
/// accessible fields of a component. The holder of this struct should be the
/// consumer. To retrieve access to the producer-side: call `producer()`. In
/// case the queue is moved before one can call `producer()`, call
/// `producer_factory()`. This incurs a bit more overhead.
///
/// This is a queue that will resize (indefinitely) if it becomes full, and will
/// not shrink. So probably a temporary thing.
///
/// In debug mode we'll make sure that there are no producers when the queue is
/// dropped. We don't do this in release mode because the runtime is written
/// such that components always remain alive (hence, this queue will remain
/// accessible) while there are references to it.
// NOTE: Addendum to the above remark, not true if the thread owning the
// consumer sides crashes, unwinds, and drops the `Box` with it. Question is: do
// I want to take that into account?
pub struct QueueDynMpsc<T> {
    // Entire contents are boxed up such that we can create producers that have
    // a pointer to the contents.
    inner: Box<Shared<T>>
}

// One may move around the queue between threads, as long as there is only one
// instance of it.
unsafe impl<T> Send for QueueDynMpsc<T>{}

/// Shared data between queue consumer and the queue producers
struct Shared<T> {
    data: UnfairSeLock<Inner<T>>,
    read_head: AtomicU32,
    write_head: AtomicU32,
    limit_head: AtomicU32,
    #[cfg(debug_assertions)] dbg: AtomicU32,
}

/// Locked by an exclusive/shared lock. Exclusive lock is obtained when the
/// inner data array is resized.
struct Inner<T> {
    data: RawArray<T>,
    compare_mask: u32,
    read_mask: u32,
}

type InnerRead<'a, T> = UnfairSeLockSharedGuard<'a, Inner<T>>;

impl<T> QueueDynMpsc<T> {
    /// Constructs a new MPSC queue. Note that the initial capacity is always
    /// increased to the next power of 2 (if it isn't already).
    pub fn new(initial_capacity: usize) -> Self {
        let initial_capacity = initial_capacity.next_power_of_two();
        assert_correct_capacity(initial_capacity);

        let mut data = RawArray::new();
        data.resize(initial_capacity);

        let initial_capacity = initial_capacity as u32;

        return Self{
            inner: Box::new(Shared {
                data: UnfairSeLock::new(Inner{
                    data,
                    compare_mask: (2 * initial_capacity) - 1,
                    read_mask: initial_capacity - 1,
                }),
                read_head: AtomicU32::new(0),
                write_head: AtomicU32::new(initial_capacity),
                limit_head: AtomicU32::new(initial_capacity),
                #[cfg(debug_assertions)] dbg: AtomicU32::new(0),
            }),
        };
    }

    #[inline]
    pub fn producer(&self) -> QueueDynProducer<T> {
        return QueueDynProducer::new(self.inner.as_ref());
    }

    #[inline]
    pub fn producer_factory(&self) -> QueueDynProducerFactory<T> {
        return QueueDynProducerFactory::new(self.inner.as_ref());
    }

    /// Return `true` if a subsequent call to `pop` will return a value. Note
    /// that if it returns `false`, there *might* also be a value returned by
    /// `pop`.
    pub fn can_pop(&mut self) -> bool {
        let data_lock = self.inner.data.lock_shared();
        let cur_read = self.inner.read_head.load(Ordering::Acquire);
        let cur_limit = self.inner.limit_head.load(Ordering::Acquire);
        let buf_size = data_lock.data.cap() as u32;
        return (cur_read + buf_size) & data_lock.compare_mask != cur_limit;
    }

    /// Perform an attempted read from the queue. It might be that some producer
    /// is putting something in the queue while this function is executing, and
    /// we don't get the consume it.
    pub fn pop(&mut self) -> Option<T> {
        let data_lock = self.inner.data.lock_shared();
        let cur_read = self.inner.read_head.load(Ordering::Acquire);
        let cur_limit = self.inner.limit_head.load(Ordering::Acquire);
        let buf_size = data_lock.data.cap() as u32;

        if (cur_read + buf_size) & data_lock.compare_mask != cur_limit {
            // Make a bitwise copy of the value and return it. The receiver is
            // responsible for dropping it.
            unsafe {
                let source = data_lock.data.get((cur_read & data_lock.read_mask) as usize);
                let value = std::ptr::read(source);
                // We can perform a store since we're the only ones modifying
                // the atomic.
                self.inner.read_head.store((cur_read + 1) & data_lock.compare_mask, Ordering::Release);
                return Some(value);
            }
        } else {
            return None;
        }
    }
}

impl<T> Drop for QueueDynMpsc<T> {
    fn drop(&mut self) {
        // There should be no more `QueueDynProducer` pointers to this queue
        dbg_code!(assert_eq!(self.inner.dbg.load(Ordering::Acquire), 0));
        // And so the limit head should be equal to the write head
        let data_lock = self.inner.data.lock_shared();
        let write_index = self.inner.write_head.load(Ordering::Acquire);
        assert_eq!(self.inner.limit_head.load(Ordering::Acquire), write_index);

        // Every item that has not yet been taken out of the queue needs to
        // have its destructor called. We immediately apply the
        // increment-by-size trick and wait until we've hit the write head.
        let mut read_index = self.inner.read_head.load(Ordering::Acquire);
        read_index += data_lock.data.cap() as u32;
        while read_index & data_lock.compare_mask != write_index {
            unsafe {
                let target = data_lock.data.get((read_index & data_lock.read_mask) as usize);
                std::ptr::drop_in_place(target);
            }
            read_index += 1;
        }
    }
}

pub struct QueueDynProducer<T> {
    queue: *const Shared<T>,
}

impl<T> QueueDynProducer<T> {
    fn new(queue: &Shared<T>) -> Self {
        dbg_code!(queue.dbg.fetch_add(1, Ordering::AcqRel));
        return Self{ queue: queue as *const _ };
    }

    pub fn push(&self, value: T) {
        let queue = unsafe{ &*self.queue };

        let mut data_lock = queue.data.lock_shared();
        let mut write_index = queue.write_head.load(Ordering::Acquire);

        'attempt_write: loop {
            let read_index = queue.read_head.load(Ordering::Acquire);

            if write_index == read_index { // both stored as [0, 2*capacity), so we can check equality without bitwise ANDing
                // Need to resize, try loading read/write index afterwards
                let expected_capacity = data_lock.data.cap();
                data_lock = self.resize(data_lock, expected_capacity);
                write_index = queue.write_head.load(Ordering::Acquire);
                continue 'attempt_write;
            }

            // If here try to advance write index
            let new_write_index = (write_index + 1) & data_lock.compare_mask;
            if let Err(actual_write_index) = queue.write_head.compare_exchange(
                write_index, new_write_index, Ordering::AcqRel, Ordering::Acquire
            ) {
                write_index = actual_write_index;
                continue 'attempt_write;
            }

            // We're now allowed to write at `write_index`
            unsafe {
                std::ptr::write(data_lock.data.get((write_index & data_lock.read_mask) as usize), value);
            }

            // Update limit head to let reader obtain the written value in a
            // CAS-loop
            while let Err(_) = queue.limit_head.compare_exchange_weak(
                write_index, new_write_index,
                Ordering::AcqRel, Ordering::Relaxed
            ) {}

            return;
        }
    }

    fn resize(&self, shared_lock: InnerRead<T>, expected_capacity: usize) -> InnerRead<T> {
        drop(shared_lock);
        let queue = unsafe{ &*self.queue };

        {
            let mut exclusive_lock = queue.data.lock_exclusive();

            // We hold the exclusive lock, but someone else might have done the resizing, and so:
            if exclusive_lock.data.cap() == expected_capacity {
                let old_capacity = expected_capacity;
                let new_capacity = 2 * old_capacity;
                assert_correct_capacity(new_capacity);

                // Resize by a factor of two, and make the two halves identical.
                exclusive_lock.data.resize(new_capacity);
                for idx in old_capacity..new_capacity {
                    unsafe {
                        let target = exclusive_lock.data.get(idx);
                        let source = exclusive_lock.data.get(idx - old_capacity);
                        std::ptr::write(target, std::ptr::read(source));
                    }
                }

                // Modify all atomics to reflect that we just resized the
                // underlying buffer. We have that everything between the read
                // index and the write index is readable. And the following
                // preserves that property, while increasing the size from
                // `old_capacity` to `new_capacity`.
                // Note that the addition of `new_capacity` to `write_head` is
                // to ensure the ringbuffer can distinguish the cases where the
                // ringbuffer is full, and when it is empty.
                let mut read_index = queue.read_head.load(Ordering::Acquire);
                let mut write_index = queue.write_head.load(Ordering::Acquire);
                debug_assert_eq!(write_index, queue.limit_head.load(Ordering::Acquire)); // since we have exclusive access

                let is_full = read_index == write_index; // before bitwise AND-mask
                read_index &= exclusive_lock.read_mask;
                write_index &= exclusive_lock.read_mask;

                let new_capacity = new_capacity as u32;
                if read_index <= write_index && !is_full { // which means: (read index < write_index) || buffer_is_empty
                    // The readable elements do not wrap around the ringbuffer
                    write_index += new_capacity;
                } else {
                    // The readable elements do wrap around the ringbuffer
                    write_index += old_capacity as u32;
                    write_index += new_capacity;
                }

                queue.read_head.store(read_index, Ordering::Release);
                queue.limit_head.store(write_index, Ordering::Release);
                queue.write_head.store(write_index, Ordering::Release);

                // Update the masks
                exclusive_lock.read_mask = new_capacity - 1;
                exclusive_lock.compare_mask = (2 * new_capacity) - 1;
            }
        }

        // Reacquire shared lock
        return queue.data.lock_shared();
    }
}

impl<T> Drop for QueueDynProducer<T> {
    fn drop(&mut self) {
        dbg_code!(unsafe{ (*self.queue).dbg.fetch_sub(1, Ordering::AcqRel) });
    }
}

// producer end is `Send`, because in debug mode we make sure that there are no
// more producers when the queue is destroyed. But is not sync, because that
// would circumvent our atomic counter shenanigans.
unsafe impl<T> Send for QueueDynProducer<T>{}

#[inline]
fn assert_correct_capacity(capacity: usize) {
    assert!(capacity.is_power_of_two() && capacity < (u32::MAX as usize) / 2);
}

pub struct QueueDynProducerFactory<T> {
    queue: *const Shared<T>
}

impl<T> QueueDynProducerFactory<T> {
    fn new(queue: &Shared<T>) -> Self {
        dbg_code!(queue.dbg.fetch_add(1, Ordering::AcqRel));
        return Self{ queue: queue as *const _ };
    }

    pub fn producer(&self) -> QueueDynProducer<T> {
        return QueueDynProducer::new(unsafe{ &*self.queue });
    }
}

impl<T> Drop for QueueDynProducerFactory<T> {
    fn drop(&mut self) {
        dbg_code!({
            let queue = unsafe{ &*self.queue };
            queue.dbg.fetch_sub(1, Ordering::AcqRel);
        });
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use super::super::tests::*;

    fn queue_size<T>(queue: &QueueDynMpsc<T>) -> usize {
        let lock = queue.inner.data.lock_exclusive();
        return lock.data.cap();
    }

    #[test]
    fn single_threaded_fixed_size_push_pop() {
        const INIT_SIZE: usize = 16;
        const NUM_ROUNDS: usize = 3;
        let mut cons = QueueDynMpsc::new(INIT_SIZE);
        let prod = cons.producer();

        let counters = Counters::new();

        for _round in 0..NUM_ROUNDS {
            // Fill up with indices
            for idx in 0..INIT_SIZE {
                prod.push(Resource::new(&counters, idx as u64));
            }

            // Take out indices and check
            for idx in 0..INIT_SIZE {
                let gotten = cons.pop().unwrap();
                assert_eq!(idx as u64, gotten.val);
            }

            assert!(cons.pop().is_none()); // nothing left in queue
            assert_eq!(queue_size(&cons), INIT_SIZE); // queue still of same size
        }

        let num_expected = (INIT_SIZE * NUM_ROUNDS) as u64;
        assert_ctor_eq!(counters, num_expected);
        assert_dtor_eq!(counters, num_expected);
    }

    #[test]
    fn single_threaded_resizing_push_pop() {
        const INIT_SIZE: usize = 8;
        const NUM_RESIZE: usize = 3; // note: each resize increases capacity by factor of two

        let mut cons = QueueDynMpsc::new(INIT_SIZE);
        let prod = cons.producer();

        let counters = Counters::new();

        for resize_idx in 0..NUM_RESIZE {
            // Fill up with indices, one more than the size
            let cur_size = INIT_SIZE << resize_idx;
            let new_size = cur_size << 1;
            for idx in 0..new_size {
                prod.push(Resource::new(&counters, idx as u64));
            }

            for idx in 0..new_size {
                let gotten = cons.pop().unwrap();
                assert_eq!(idx as u64, gotten.val);
            }

            assert!(cons.pop().is_none());
            assert_eq!(queue_size(&cons), new_size);
        }

        assert_eq!(queue_size(&cons), INIT_SIZE << NUM_RESIZE);

        // Bit trickery supremo (fails if INIT_SIZE is not a power of two)!
        let num_expected = ((INIT_SIZE << (NUM_RESIZE + 1)) - 1 - ((INIT_SIZE << 1) - 1)) as u64;
        assert_ctor_eq!(counters, num_expected);
        assert_dtor_eq!(counters, num_expected);
    }

    #[test]
    fn single_threaded_alternating_push_pop() {
        const INIT_SIZE: usize = 32;
        const NUM_ROUNDS: usize = 4;
        const NUM_PROD: usize = 4;
        assert!(INIT_SIZE % NUM_PROD == 0);

        let mut cons = QueueDynMpsc::new(INIT_SIZE);
        let mut prods = Vec::with_capacity(NUM_PROD);
        for _ in 0..NUM_PROD {
            prods.push(cons.producer());
        }

        let counters = Counters::new();

        for _round_idx in 0..NUM_ROUNDS {
            // Fill up, alternating per producer
            let mut prod_idx = 0;
            for idx in 0..INIT_SIZE {
                let prod = &prods[prod_idx];
                prod_idx += 1;
                prod_idx %= NUM_PROD;
                prod.push(Resource::new(&counters, idx as u64));
            }

            // Retrieve and check again
            for idx in 0..INIT_SIZE {
                let gotten = cons.pop().unwrap();
                assert_eq!(idx as u64, gotten.val);
            }

            assert!(cons.pop().is_none());
            assert_eq!(queue_size(&cons), INIT_SIZE);
        }

        let num_expected = (NUM_ROUNDS * INIT_SIZE) as u64;
        assert_ctor_eq!(counters, num_expected);
        assert_dtor_eq!(counters, num_expected);
    }

    #[test]
    fn partially_filled_cleanup() {
        // Init at 16, fill until 8, take out 4, 4 destructors not called before
        // queue consumer side is dropped
        let mut cons = QueueDynMpsc::new(16);
        let mut prod = cons.producer();

        let counters = Counters::new();

        for _ in 0..8 {
            prod.push(Resource::new(&counters, 0));
        }

        for _ in 0..4 {
            cons.pop().expect("a value");
        }

        assert_ctor_eq!(counters, 8);
        assert_dtor_eq!(counters, 4);
        drop(prod);
        drop(cons);
        assert_ctor_eq!(counters, 8);
        assert_dtor_eq!(counters, 8);
    }

    #[test]
    fn multithreaded_production_and_consumption() {
        use std::sync::{Arc, Mutex};

        // Rather randomized test. Kind of a stress test. We let the producers
        // produce `u64` values with the high bits containing their identifier.
        // The consumer will try receive as fast as possible until each thread
        // has produced the expected number of values.
        const NUM_STRESS_TESTS: usize = 2;
        const NUM_PER_THREAD: usize = 4096;
        const NUM_PROD_THREADS: usize = 4;

        fn take_num_thread_idx(number: u64) -> u64 { return (number >> 32) & 0xFFFFFFFF; }
        fn take_num(number: u64) -> u64 { return number & 0xFFFFFFFF; }

        // Span queue and producers
        for _stress_idx in 0..NUM_STRESS_TESTS {
            let mut queue = QueueDynMpsc::<Resource>::new(4);
            let mut producers = Vec::with_capacity(NUM_PROD_THREADS);
            for _idx in 0..NUM_PROD_THREADS {
                producers.push(queue.producer());
            }

            let counters = Counters::new();

            // Start up consume thread and let it spin immediately. Note that it
            // must die last.
            let can_exit_lock = Arc::new(Mutex::new(false));
            let mut held_exit_lock = can_exit_lock.lock().unwrap();

            let consume_handle = {
                let can_exit_lock = can_exit_lock.clone();
                std::thread::spawn(move || {
                    let mut thread_val_counters = [0u64; NUM_PROD_THREADS];
                    let mut num_done = 0;
                    while num_done != NUM_PROD_THREADS {
                        // Spin until we get something
                        let new_value = loop {
                            if let Some(value) = queue.pop() {
                                break value.val;
                            }
                        };

                        let thread_idx = take_num_thread_idx(new_value);
                        let counter = &mut thread_val_counters[thread_idx as usize];
                        assert_eq!(*counter, take_num(new_value)); // values per thread arrive in order

                        *counter += 1;
                        if *counter == NUM_PER_THREAD as u64 {
                            // Finished this one
                            num_done += 1;
                        }
                    }

                    let _exit_guard = can_exit_lock.lock().unwrap();
                })
            };

            // Set up producer threads
            let mut handles = Vec::with_capacity(NUM_PROD_THREADS);
            for prod_idx in 0..NUM_PROD_THREADS {
                let prod_handle = producers.pop().unwrap();
                let counters = counters.clone();

                let handle = std::thread::spawn(move || {
                    let base_value = (prod_idx as u64) << 32;
                    for number in 0..NUM_PER_THREAD as u64 {
                        prod_handle.push(Resource::new(&counters, base_value + number));
                    }
                });

                handles.push(handle);
            }

            // Wait until all producers finished, then we unlock our held lock and
            // we wait until the consumer finishes
            for handle in handles {
                handle.join().expect("clean producer exit");
            }

            drop(held_exit_lock);
            consume_handle.join().expect("clean consumer exit");

            let num_expected = (NUM_PER_THREAD * NUM_PROD_THREADS) as u64;
            assert_ctor_eq!(counters, num_expected);
            assert_dtor_eq!(counters, num_expected);
        }
    }
}