Files @ cecf94fdb875
Branch filter:

Location: CSY/reowolf/src/runtime/retired/experimental/bits.rs

cecf94fdb875 16.0 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
Christopher Esterhuyse
simplified approach to the piecewise acquisition of port info. starting to reintegrate communication phase
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
use crate::common::*;
use std::alloc::Layout;

/// Given an iterator over BitChunk Items, iterates over the indices (each represented as a u32) for which the bit is SET,
/// treating the bits in the BitChunk as a contiguous array.
/// e.g. input [0b111000, 0b11] gives output [3, 4, 5, 32, 33].
/// observe that the bits per chunk are ordered from least to most significant bits, yielding smaller to larger usizes.
/// assumes chunk_iter will yield no more than std::u32::MAX / 32 chunks

pub const fn usize_bytes() -> usize {
    std::mem::size_of::<usize>()
}
pub const fn usize_bits() -> usize {
    usize_bytes() * 8
}
pub const fn usizes_for_bits(bits: usize) -> usize {
    (bits + (usize_bits() - 1)) / usize_bits()
}

type Chunk = usize;
type BitIndex = usize;

pub(crate) struct BitChunkIter<I: Iterator<Item = Chunk>> {
    cached: usize,
    chunk_iter: I,
    next_bit_index: BitIndex,
}
impl<I: Iterator<Item = Chunk>> BitChunkIter<I> {
    pub fn new(chunk_iter: I) -> Self {
        // first chunk is always a dummy zero, as if chunk_iter yielded Some(FALSE_CHUNK).
        // Consequences:
        // 1. our next_bit_index is always off by usize_bits() (we correct for it in Self::next) (no additional overhead)
        // 2. we cache Chunk and not Option<Chunk>, because chunk_iter.next() is only called in Self::next.
        Self { chunk_iter, next_bit_index: 0, cached: 0 }
    }
}
impl<I: Iterator<Item = Chunk>> Iterator for BitChunkIter<I> {
    type Item = BitIndex;
    fn next(&mut self) -> Option<Self::Item> {
        let mut chunk = self.cached;

        // loop until either:
        // 1. there are no more Items to return, or
        // 2. chunk encodes 1+ Items, one of which we will return.
        while chunk == 0 {
            // chunk has no bits set! get the next one...
            chunk = self.chunk_iter.next()?;

            // ... and jump self.next_bit_index to the next multiple of usize_bits().
            self.next_bit_index = (self.next_bit_index + usize_bits()) & !(usize_bits() - 1);
        }
        // there exists 1+ set bits in chunk
        // assert(chunk > 0);

        // Until the least significant bit of chunk is 1:
        // 1. shift chunk to the right,
        // 2. and increment self.next_bit_index accordingly
        // effectively performs a little binary search, shifting 32, then 16, ...
        // TODO perhaps there is a more efficient SIMD op for this?
        const N_INIT: BitIndex = usize_bits() / 2;
        let mut n = N_INIT;
        while n >= 1 {
            // n is [32,16,8,4,2,1] on 64-bit machine
            // this loop is unrolled with release optimizations
            let n_least_significant_mask = (1 << n) - 1;
            if chunk & n_least_significant_mask == 0 {
                // no 1 set within 0..n least significant bits.
                self.next_bit_index += n;
                chunk >>= n;
            }
            n /= 2;
        }
        // least significant bit of chunk is 1. Item to return is known.
        // assert(chunk & 1 == 1)

        // prepare our state for the next time Self::next is called.
        // Overwrite self.cached such that its shifted state is retained,
        // and jump over the bit whose index we are about to return.
        self.next_bit_index += 1;
        self.cached = chunk >> 1;

        // returned index is usize_bits() smaller than self.next_bit_index because we use an
        // off-by-usize_bits() encoding to avoid having to cache an Option<usize>.
        Some(self.next_bit_index - 1 - usize_bits())
    }
}

pub(crate) struct BitChunkIterRev<I: ExactSizeIterator<Item = Chunk>> {
    cached: usize,
    chunk_iter: I,
    next_bit_index: BitIndex,
}
impl<I: ExactSizeIterator<Item = Chunk>> BitChunkIterRev<I> {
    pub fn new(chunk_iter: I) -> Self {
        let next_bit_index = chunk_iter.len() * usize_bits();
        Self { chunk_iter, next_bit_index, cached: 0 }
    }
}
impl<I: ExactSizeIterator<Item = Chunk>> Iterator for BitChunkIterRev<I> {
    type Item = BitIndex;
    fn next(&mut self) -> Option<Self::Item> {
        let mut chunk = self.cached;
        if chunk == 0 {
            self.next_bit_index += usize_bits();
            loop {
                self.next_bit_index -= usize_bits();
                chunk = self.chunk_iter.next()?;
                if chunk != 0 {
                    break;
                }
            }
        }
        const N_INIT: BitIndex = usize_bits() / 2;
        let mut n = N_INIT;
        while n >= 1 {
            let n_most_significant_mask = !0 << (usize_bits() - n);
            if chunk & n_most_significant_mask == 0 {
                self.next_bit_index -= n;
                chunk <<= n;
            }
            n /= 2;
        }
        self.cached = chunk << 1;
        self.next_bit_index -= 1;
        Some(self.next_bit_index)
    }
}

/*  --properties-->
     ___ ___ ___ ___
    |___|___|___|___|
  | |___|___|___|___|
  | |___|___|___|___|
  | |___|___|___|___|
  |
  V
 entity chunks (groups of size usize_bits())
*/

// TODO newtypes Entity and Property

#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Pair {
    pub entity: u32,
    pub property: u32,
}
impl From<[u32; 2]> for Pair {
    fn from([entity, property]: [u32; 2]) -> Self {
        Pair { entity, property }
    }
}
impl Default for BitMatrix {
    fn default() -> Self {
        Self::new(Pair { entity: 0, property: 0 })
    }
}
pub struct BitMatrix {
    buffer: *mut usize,
    bounds: Pair,
    layout: Layout, // layout of the currently-allocated buffer
}
impl Drop for BitMatrix {
    fn drop(&mut self) {
        unsafe {
            // ?
            std::alloc::dealloc(self.buffer as *mut u8, self.layout);
        }
    }
}
impl Debug for BitMatrix {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        struct FmtRow<'a> {
            me: &'a BitMatrix,
            property: usize,
        };
        impl Debug for FmtRow<'_> {
            fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
                let row_chunks = BitMatrix::row_chunks(self.me.bounds.property as usize);
                let column_chunks = BitMatrix::column_chunks(self.me.bounds.entity as usize);
                write!(f, "|")?;
                for entity_chunk in 0..column_chunks {
                    let mut chunk =
                        unsafe { *self.me.buffer.add(row_chunks * entity_chunk + self.property) };
                    let end = if entity_chunk + 1 == column_chunks {
                        self.me.bounds.entity % usize_bits() as u32
                    } else {
                        usize_bits() as u32
                    };
                    for _ in 0..end {
                        let c = match chunk & 1 {
                            0 => '0',
                            _ => '1',
                        };
                        write!(f, "{}", c)?;
                        chunk >>= 1;
                    }
                    write!(f, "_")?;
                }
                Ok(())
            }
        }
        let row_chunks = BitMatrix::row_chunks(self.bounds.property as usize);
        let iter = (0..row_chunks).map(move |property| FmtRow { me: self, property });
        f.debug_list().entries(iter).finish()
    }
}
impl BitMatrix {
    #[inline]
    const fn row_of(entity: usize) -> usize {
        entity / usize_bits()
    }
    #[inline]
    const fn row_chunks(property_bound: usize) -> usize {
        property_bound
    }
    #[inline]
    const fn column_chunks(entity_bound: usize) -> usize {
        usizes_for_bits(entity_bound)
    }
    #[inline]
    fn offsets_unchecked(&self, at: Pair) -> [usize; 2] {
        let o_in = at.entity as usize % usize_bits();
        let row = Self::row_of(at.entity as usize);
        let row_chunks = self.bounds.property as usize;
        let o_of = row * row_chunks + at.property as usize;
        [o_of, o_in]
    }
    // returns a u32 which has bits 000...000111...111
    // for the last JAGGED chunk given the column size
    // if the last chunk is not jagged (when entity_bound % 32 == 0)
    // None is returned,
    // otherwise Some(x) is returned such that x & chunk would mask out
    // the bits NOT in 0..entity_bound
    fn last_row_chunk_mask(entity_bound: u32) -> Option<usize> {
        let zero_prefix_len = entity_bound as usize % usize_bits();
        if zero_prefix_len == 0 {
            None
        } else {
            Some(!0 >> (usize_bits() - zero_prefix_len))
        }
    }
    fn assert_within_bounds(&self, at: Pair) {
        assert!(at.entity < self.bounds.entity);
        assert!(at.property < self.bounds.property);
    }

    fn layout_for(total_chunks: usize) -> std::alloc::Layout {
        unsafe {
            // this layout is ALWAYS valid:
            // 1. size is always nonzero
            // 2. size is always a multiple of 4 and 4-aligned
            Layout::from_size_align_unchecked(usize_bytes() * total_chunks.max(1), usize_bytes())
        }
    }
    /////////
    pub fn get_bounds(&self) -> &Pair {
        &self.bounds
    }
    pub fn grow_to(&mut self, bounds: Pair) {
        assert!(bounds.entity >= self.bounds.entity);
        assert!(bounds.property >= self.bounds.property);

        let old_row_chunks = Self::row_chunks(self.bounds.property as usize);
        let old_col_chunks = Self::column_chunks(self.bounds.entity as usize);
        let new_row_chunks = Self::row_chunks(bounds.property as usize);
        let new_col_chunks = Self::column_chunks(bounds.entity as usize);

        let new_layout = Self::layout_for(new_row_chunks * new_col_chunks);
        let new_buffer = unsafe {
            let new_buffer = std::alloc::alloc(new_layout) as *mut usize;
            let mut src: *mut usize = self.buffer;
            let mut dest: *mut usize = new_buffer;
            let row_chunk_diff = new_row_chunks - old_row_chunks;
            for _col_idx in 0..old_col_chunks {
                src.copy_to_nonoverlapping(dest, old_row_chunks);
                src = src.add(old_row_chunks);
                dest = dest.add(old_row_chunks);
                if row_chunk_diff > 0 {
                    dest.write_bytes(0u8, row_chunk_diff);
                    dest = dest.add(row_chunk_diff);
                }
            }
            let last_zero_chunks = (new_col_chunks - old_col_chunks) * new_row_chunks;
            dest.write_bytes(0u8, last_zero_chunks);
            new_buffer
        };
        self.layout = new_layout;
        self.buffer = new_buffer;
        self.bounds = bounds;
    }
    pub fn clear(&mut self) {
        let total_chunks = Self::row_chunks(self.bounds.property as usize)
            * Self::column_chunks(self.bounds.entity as usize);
        unsafe {
            self.buffer.write_bytes(0u8, total_chunks);
        }
    }
    pub fn new(bounds: Pair) -> Self {
        let total_chunks = Self::row_chunks(bounds.property as usize)
            * Self::column_chunks(bounds.entity as usize);
        let layout = Self::layout_for(total_chunks);
        let buffer;
        unsafe {
            buffer = std::alloc::alloc(layout) as *mut usize;
            buffer.write_bytes(0u8, total_chunks);
        };
        Self { buffer, bounds, layout }
    }
    pub fn set(&mut self, at: Pair) {
        self.assert_within_bounds(at);
        let [o_of, o_in] = self.offsets_unchecked(at);
        unsafe { *self.buffer.add(o_of) |= 1 << o_in };
    }
    pub fn unset(&mut self, at: Pair) {
        self.assert_within_bounds(at);
        let [o_of, o_in] = self.offsets_unchecked(at);
        unsafe { *self.buffer.add(o_of) &= !(1 << o_in) };
    }
    pub fn test(&self, at: Pair) -> bool {
        self.assert_within_bounds(at);
        let [o_of, o_in] = self.offsets_unchecked(at);
        unsafe { *self.buffer.add(o_of) & 1 << o_in != 0 }
    }

    pub fn batch_mut<'a, 'b>(&mut self, mut chunk_mut_fn: impl FnMut(&'b mut [BitChunk])) {
        let row_chunks = Self::row_chunks(self.bounds.property as usize);
        let column_chunks = Self::column_chunks(self.bounds.entity as usize);
        let mut ptr = self.buffer;
        for _row in 0..column_chunks {
            let slice;
            unsafe {
                let slicey = std::slice::from_raw_parts_mut(ptr, row_chunks);
                slice = std::mem::transmute(slicey);
                ptr = ptr.add(row_chunks);
            }
            chunk_mut_fn(slice);
        }
        if let Some(mask) = Self::last_row_chunk_mask(self.bounds.entity) {
            // TODO TEST
            let mut ptr = unsafe { self.buffer.add((column_chunks - 1) * row_chunks) };
            for _ in 0..row_chunks {
                unsafe {
                    *ptr &= mask;
                    ptr = ptr.add(1);
                }
            }
        }
    }

    /// given:
    /// 1. a buffer to work with
    /// 2. a _fold function_ for combining the properties of a given entity
    ///    and returning a new derived property (working )
    pub fn iter_entities_where<'a, 'b>(
        &'a self,
        buf: &'b mut Vec<usize>,
        mut fold_fn: impl FnMut(&'b [BitChunk]) -> BitChunk,
    ) -> impl Iterator<Item = u32> + 'b {
        let buf_start = buf.len();
        let row_chunks = Self::row_chunks(self.bounds.property as usize);
        let column_chunks = Self::column_chunks(self.bounds.entity as usize);
        let mut ptr = self.buffer;
        for _row in 0..column_chunks {
            let slice;
            unsafe {
                let slicey = std::slice::from_raw_parts(ptr, row_chunks);
                slice = std::mem::transmute(slicey);
                ptr = ptr.add(row_chunks);
            }
            let chunk = fold_fn(slice);
            buf.push(chunk.0);
        }
        if let Some(mask) = Self::last_row_chunk_mask(self.bounds.entity) {
            *buf.iter_mut().last().unwrap() &= mask;
        }
        BitChunkIter::new(buf.drain(buf_start..)).map(|x| x as u32)
    }
    pub fn iter_entities_where_rev<'a, 'b>(
        &'a self,
        buf: &'b mut Vec<usize>,
        mut fold_fn: impl FnMut(&'b [BitChunk]) -> BitChunk,
    ) -> impl Iterator<Item = u32> + 'b {
        let buf_start = buf.len();
        let row_chunks = Self::row_chunks(self.bounds.property as usize);
        let column_chunks = Self::column_chunks(self.bounds.entity as usize);
        let mut ptr = self.buffer;
        for _row in 0..column_chunks {
            let slice;
            unsafe {
                let slicey = std::slice::from_raw_parts(ptr, row_chunks);
                slice = std::mem::transmute(slicey);
                ptr = ptr.add(row_chunks);
            }
            let chunk = fold_fn(slice);
            buf.push(chunk.0);
        }
        if let Some(mask) = Self::last_row_chunk_mask(self.bounds.entity) {
            *buf.iter_mut().last().unwrap() &= mask;
        }
        BitChunkIterRev::new(buf.drain(buf_start..).rev()).map(|x| x as u32)
    }
}

use derive_more::*;
#[derive(
    Debug, Copy, Clone, BitAnd, Not, BitOr, BitXor, BitAndAssign, BitOrAssign, BitXorAssign,
)]
#[repr(transparent)]
pub struct BitChunk(usize);
impl BitChunk {
    const fn any(self) -> bool {
        self.0 != FALSE_CHUNK.0
    }
    const fn all(self) -> bool {
        self.0 == TRUE_CHUNK.0
    }
}
pub const TRUE_CHUNK: BitChunk = BitChunk(!0);
pub const FALSE_CHUNK: BitChunk = BitChunk(0);

#[test]
fn matrix_test() {
    let mut m = BitMatrix::new(Pair { entity: 70, property: 3 });
    m.set([2, 0].into());
    m.set([40, 1].into());
    m.set([40, 2].into());
    m.set([40, 0].into());
    println!("{:#?}", &m);

    m.batch_mut(|p| p[0] = TRUE_CHUNK);
    println!("{:#?}", &m);

    for i in (0..40).step_by(7) {
        m.unset([i, 0].into());
    }
    m.unset([62, 0].into());
    println!("{:#?}", &m);

    m.batch_mut(move |p| p[1] = p[0] ^ TRUE_CHUNK);
    println!("{:#?}", &m);

    let mut buf = vec![];
    for index in m.iter_entities_where(&mut buf, move |p| p[1]) {
        println!("index {}", index);
    }
    for index in m.iter_entities_where_rev(&mut buf, move |p| p[1]) {
        println!("index {}", index);
    }
}

#[test]
fn bit_chunk_iter_rev() {
    let x = &[0b1, 0b1000011, 0, 0, 0b101];
    for i in BitChunkIterRev::new(x.iter().copied()) {
        println!("i = {:?}", i);
    }
}