Files
@ cecf94fdb875
Branch filter:
Location: CSY/reowolf/src/runtime/retired/experimental/ecs.rs
cecf94fdb875
34.2 KiB
application/rls-services+xml
simplified approach to the piecewise acquisition of port info. starting to reintegrate communication phase
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 | use crate::common::*;
use crate::runtime::endpoint::EndpointExt;
use crate::runtime::ProtocolS;
use std::collections::HashMap;
/// invariant: last element is not zero.
/// => all values out of bounds are implicitly absent.
/// i.e., &[0,1] means {1<<32, 0} while &[0,1] is identical to &[1] and means {1}.
#[derive(Debug, Default)]
struct BitSet(Vec<u32>);
impl BitSet {
fn as_slice(&self) -> &[u32] {
self.0.as_slice()
}
fn iter(&self) -> impl Iterator<Item = u32> + '_ {
self.0.iter().copied()
}
fn is_empty(&self) -> bool {
// relies on the invariant: no trailing zero u32's
self.0.is_empty()
}
fn clear(&mut self) {
self.0.clear();
}
fn set_ones_until(&mut self, mut end: usize) {
self.0.clear();
loop {
if end >= 32 {
// full 32 bits of 1
self.0.push(!0u32);
} else {
if end > 0 {
// #end ones, with a (32-end) prefix of zeroes
self.0.push(!0u32 >> (32 - end));
}
return;
}
}
}
#[inline(always)]
fn index_decomposed(index: usize) -> [usize; 2] {
// [chunk_index, chunk_bit]
[index / 32, index % 32]
}
fn test(&self, at: usize) -> bool {
let [chunk_index, chunk_bit] = Self::index_decomposed(at);
match self.0.get(chunk_index) {
None => false,
Some(&chunk) => (chunk & (1 << chunk_bit)) != 0,
}
}
fn set(&mut self, at: usize) {
let [chunk_index, chunk_bit] = Self::index_decomposed(at);
if chunk_index >= self.0.len() {
self.0.resize(chunk_index + 1, 0u32);
}
let chunk = unsafe {
// SAFE! previous line ensures sufficient size
self.0.get_unchecked_mut(chunk_index)
};
*chunk |= 1 << chunk_bit;
}
fn unset(&mut self, at: usize) {
let [chunk_index, chunk_bit] = Self::index_decomposed(at);
if chunk_index < self.0.len() {
let chunk = unsafe {
// SAFE! previous line ensures sufficient size
self.0.get_unchecked_mut(chunk_index)
};
*chunk &= !(1 << chunk_bit);
while let Some(0u32) = self.0.iter().copied().last() {
self.0.pop();
}
}
}
}
/// Converts an iterator over contiguous u32 chunks into an iterator over usize
/// e.g. input [0b111000, 0b11] gives output [3, 4, 5, 32, 33]
/// observe that the bits per chunk are ordered from least to most significant bits, yielding smaller to larger usizes.
/// works by draining the inner u32 chunk iterator one u32 at a time, then draining that chunk until its 0.
struct BitChunkIter<I: Iterator<Item = u32>> {
chunk_iter: I,
next_bit_index: usize,
cached: u32,
}
impl<I: Iterator<Item = u32>> BitChunkIter<I> {
fn new(chunk_iter: I) -> Self {
// first chunk is always a dummy zero, as if chunk_iter yielded Some(0).
// Consequences:
// 1. our next_bit_index is always off by 32 (we correct for it in Self::next) (no additional overhead)
// 2. we cache u32 and not Option<u32>, because chunk_iter.next() is only called in Self::next.
Self { chunk_iter, next_bit_index: 0, cached: 0 }
}
}
impl<I: Iterator<Item = u32>> Iterator for BitChunkIter<I> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
let mut chunk = self.cached;
// loop until either:
// 1. there are no more Items to return, or
// 2. chunk encodes 1+ Items, one of which we will return.
while chunk == 0 {
// chunk is still empty! get the next one...
chunk = self.chunk_iter.next()?;
// ... and jump self.next_bit_index to the next multiple of 32.
self.next_bit_index = (self.next_bit_index + 32) & !(32 - 1);
}
// assert(chunk > 0);
// Shift the contents of chunk until the least significant bit is 1.
// ... being sure to increment next_bit_index accordingly.
#[inline(always)]
fn skip_n_zeroes(chunk: &mut u32, n: usize, next_bit_index: &mut usize) {
if *chunk & ((1 << n) - 1) == 0 {
// n least significant bits are zero. skip n bits.
*next_bit_index += n;
*chunk >>= n;
}
}
skip_n_zeroes(&mut chunk, 16, &mut self.next_bit_index);
skip_n_zeroes(&mut chunk, 08, &mut self.next_bit_index);
skip_n_zeroes(&mut chunk, 04, &mut self.next_bit_index);
skip_n_zeroes(&mut chunk, 02, &mut self.next_bit_index);
skip_n_zeroes(&mut chunk, 01, &mut self.next_bit_index);
// least significant bit of chunk is 1.
// assert(chunk & 1 == 1)
// prepare our state for the next time Self::next is called.
// Overwrite self.cached such that its shifted state is retained,
// and jump over the bit whose index we are about to return.
self.next_bit_index += 1;
self.cached = chunk >> 1;
// returned index is 32 smaller than self.next_bit_index because we use an
// off-by-32 encoding to avoid having to cache an Option<u32>.
Some(self.next_bit_index - 1 - 32)
}
}
/// Returns an iterator over chunks of bits where ALL of the given
/// bitsets have 1.
struct AndChunkIter<'a> {
// this value is not overwritten during iteration
// invariant: !sets.is_empty()
sets: &'a [&'a [u32]],
next_chunk_index: usize,
}
impl<'a> AndChunkIter<'a> {
fn new(sets: &'a [&'a [u32]]) -> Self {
let sets = if sets.is_empty() { &[&[] as &[_]] } else { sets };
Self { sets, next_chunk_index: 0 }
}
}
impl Iterator for AndChunkIter<'_> {
type Item = u32;
fn next(&mut self) -> Option<u32> {
let old_chunk_index = self.next_chunk_index;
self.next_chunk_index += 1;
self.sets.iter().fold(Some(!0u32), move |a, b| {
let a = a?;
let b = *b.get(old_chunk_index)?;
Some(a & b)
})
}
}
#[test]
fn test_bit_iter() {
static SETS: &[&[u32]] = &[
//
&[0b101001, 0b101001],
&[0b100001, 0b101001],
];
let iter = BitChunkIter::new(AndChunkIter::new(SETS));
let indices = iter.collect::<Vec<_>>();
println!("indices {:?}", indices);
}
enum Entity {
Payload(Payload),
Machine { state: ProtocolS, component_index: usize },
}
struct PortKey(usize);
struct EntiKey(usize);
struct CompKey(usize);
struct ComponentInfo {
port_keyset: HashSet<PortKey>,
protocol: Arc<Protocol>,
}
#[derive(Default)]
struct Connection {
ecs: Ecs,
round_solution: Vec<(ChannelId, bool)>, // encodes an ASSIGNMENT
ekey_channel_ids: Vec<ChannelId>, // all channel Ids for local keys
component_info: Vec<ComponentInfo>,
endpoint_exts: Vec<EndpointExt>,
}
/// Invariant: every component is either:
/// in to_run = (to_run_r U to_run_w)
/// or in ONE of the ekeys (which means it is blocked by a get on that ekey)
/// or in sync_ended (because they reached the end of their sync block)
/// or in inconsistent (because they are inconsistent)
#[derive(Default)]
struct Ecs {
entities: Vec<Entity>, // machines + payloads
assignments: HashMap<(ChannelId, bool), BitSet>,
payloads: BitSet,
ekeys: HashMap<usize, BitSet>,
inconsistent: BitSet,
sync_ended: BitSet,
to_run_r: BitSet, // read from and drained while...
to_run_w: BitSet, // .. written to and populated. }
}
impl Debug for Ecs {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
let elen = self.entities.len();
write!(f, "{:<30}", "payloads")?;
print_flag_bits(f, &self.payloads, elen)?;
write!(f, "{:<30}", "inconsistent")?;
print_flag_bits(f, &self.inconsistent, elen)?;
write!(f, "{:<30}", "sync_ended")?;
print_flag_bits(f, &self.sync_ended, elen)?;
write!(f, "{:<30}", "to_run_r")?;
print_flag_bits(f, &self.to_run_r, elen)?;
write!(f, "{:<30}", "to_run_w")?;
print_flag_bits(f, &self.to_run_w, elen)?;
for (assignment, bitset) in self.assignments.iter() {
write!(f, "{:<30?}", assignment)?;
print_flag_bits(f, bitset, elen)?;
}
for (ekey, bitset) in self.ekeys.iter() {
write!(f, "Ekey {:<30?}", ekey)?;
print_flag_bits(f, bitset, elen)?;
}
Ok(())
}
}
fn print_flag_bits(f: &mut Formatter, bitset: &BitSet, elen: usize) -> std::fmt::Result {
for i in 0..elen {
f.pad(match bitset.test(i) {
true => "1",
false => "0",
})?;
}
write!(f, "\n")
}
struct Protocol {
// TODO
}
struct Msg {
assignments: Vec<(ChannelId, bool)>, // invariant: no two elements have same ChannelId value
payload: Payload,
}
impl Connection {
fn new_channel(&mut self) -> [PortKey; 2] {
todo!()
}
fn round(&mut self) {
// 1. at the start of the round we throw away all assignments.
// we are going to shift entities around, so all bitsets need to be cleared anyway.
self.ecs.assignments.clear();
self.ecs.payloads.clear();
self.ecs.ekeys.clear();
self.ecs.inconsistent.clear();
self.ecs.to_run_r.clear();
self.ecs.to_run_w.clear();
self.ecs.sync_ended.clear();
// 2. We discard all payloads; they are all stale now.
// All machines are contiguous in the vector
self.ecs
.entities
.retain(move |entity| if let Entity::Machine { .. } = entity { true } else { false });
// 3. initially, all the components need a chance to run in MONO mode
self.ecs.to_run_r.set_ones_until(self.ecs.entities.len());
// 4. INVARIANT established:
// for all State variants in self.entities,
// exactly one bit throughout the fields of csb is set.
// 5. Run all machines in (csb.to_run_r U csb.to_run_w).
// Single, logical set is broken into readable / writable parts to allow concurrent reads / writes safely.
while !self.ecs.to_run_r.is_empty() {
for _eid in self.ecs.to_run_r.iter() {
// TODO run and possbibly manipulate self.to_run_w
}
self.ecs.to_run_r.clear();
std::mem::swap(&mut self.ecs.to_run_r, &mut self.ecs.to_run_w);
}
assert!(self.ecs.to_run_w.is_empty());
#[allow(unreachable_code)] // DEBUG
'recv_loop: loop {
let ekey: usize = todo!();
let msg: Msg = todo!();
// 1. check if this message is redundant, i.e., there is already an equivalent payload with predicate >= this one.
// ie. starting from all payloads
// 2. try and find a payload whose predicate is the same or more general than this one
// if it exists, drop the message; it is uninteresting.
let ekey_bitset = self.ecs.ekeys.get(&ekey);
if let Some(_eid) = ekey_bitset.map(move |ekey_bitset| {
let mut slice_builder = vec![];
// collect CONFLICTING assignments into slice_builder
for &(channel_id, boolean) in msg.assignments.iter() {
if let Some(bitset) = self.ecs.assignments.get(&(channel_id, !boolean)) {
slice_builder.push(bitset.as_slice());
}
}
let chunk_iter =
InNoneExceptIter::new(slice_builder.as_slice(), ekey_bitset.as_slice());
BitChunkIter::new(chunk_iter).next()
}) {
// _eid is a payload whose predicate is at least as general
// drop this message!
continue 'recv_loop;
}
// 3. insert this payload as an entity, overwriting an existing LESS GENERAL payload if it exists.
let payload_eid: usize = if let Some(eid) = ekey_bitset.and_then(move |ekey_bitset| {
let mut slice_builder = vec![];
slice_builder.push(ekey_bitset.as_slice());
for assignment in msg.assignments.iter() {
if let Some(bitset) = self.ecs.assignments.get(assignment) {
slice_builder.push(bitset.as_slice());
}
}
let chunk_iter = AndChunkIter::new(slice_builder.as_slice());
BitChunkIter::new(chunk_iter).next()
}) {
// overwrite this entity index.
eid
} else {
// nothing to overwrite. add a new payload entity.
let eid = self.ecs.entities.len();
self.ecs.entities.push(Entity::Payload(msg.payload));
for &assignment in msg.assignments.iter() {
let mut bitset = self.ecs.assignments.entry(assignment).or_default();
bitset.set(eid);
}
self.ecs.payloads.set(eid);
eid
};
self.feed_msg(payload_eid, ekey);
// TODO run all in self.ecs.to_run_w
}
}
fn run_poly_p(&mut self, machine_eid: usize) {
match self.ecs.entities.get_mut(machine_eid) {
Some(Entity::Machine { component_index, state }) => {
// TODO run the machine
use PolyBlocker as Pb;
let blocker: Pb = todo!();
match blocker {
Pb::Inconsistent => self.ecs.inconsistent.set(machine_eid),
Pb::CouldntCheckFiring(key) => {
// 1. clone the machine
let state_true = state.clone();
let machine_eid_true = self.ecs.entities.len();
self.ecs.entities.push(Entity::Machine {
state: state_true,
component_index: *component_index,
});
// 2. copy the assignments of the existing machine to the new one
for bitset in self.ecs.assignments.values() {
if bitset.test(machine_eid) {
bitset.set(machine_eid_true);
}
}
// 3. give the old machine FALSE and the new machine TRUE
let channel_id =
self.endpoint_exts.get(key.to_raw() as usize).unwrap().info.channel_id;
self.ecs
.assignments
.entry((channel_id, false))
.or_default()
.set(machine_eid);
self.ecs
.assignments
.entry((channel_id, true))
.or_default()
.set(machine_eid_true);
self.run_poly_p(machine_eid);
self.run_poly_p(machine_eid_true);
}
_ => todo!(),
}
// 1. make the assignment of this machine concrete WRT its ports
let component_info = self.component_info.get(*component_index).unwrap();
for &ekey in component_info.port_keyset.iter() {
let channel_id = self.endpoint_exts.get(ekey.0).unwrap().info.channel_id;
let test = self
.ecs
.assignments
.get(&(channel_id, true))
.map(move |bitset| bitset.test(machine_eid))
.unwrap_or(false);
if !test {
// TRUE assignment wasn't set
// so set FALSE assignment (no effect if already set)
self.ecs
.assignments
.entry((channel_id, false))
.or_default()
.set(machine_eid);
}
}
// 2. this machine becomes solved
self.ecs.sync_ended.set(machine_eid);
self.generate_new_solutions(machine_eid);
// TODO run this machine to a poly blocker
// potentially mark as inconsistent, blocked on some key, or solved
// if solved
}
_ => unreachable!(),
}
}
fn generate_new_solutions(&mut self, newly_solved_machine_eid: usize) {
// this vector will be used to store assignments from self.ekey_channel_ids to elements in {true, false}
let mut solution_prefix = vec![];
self.generate_new_solutions_rec(newly_solved_machine_eid, &mut solution_prefix);
// let all_channel_ids =
// let mut slice_builder = vec![];
}
fn generate_new_solutions_rec(
&mut self,
newly_solved_machine_eid: usize,
solution_prefix: &mut Vec<bool>,
) {
let eid = newly_solved_machine_eid;
let n = solution_prefix.len();
if let Some(&channel_id) = self.ekey_channel_ids.get(n) {
if let Some(assignment) = self.machine_assignment_for(eid, channel_id) {
// this machine already gives an assignment
solution_prefix.push(assignment);
self.generate_new_solutions_rec(eid, solution_prefix);
solution_prefix.pop();
} else {
// this machine does not give an assignment. try both branches!
solution_prefix.push(false);
self.generate_new_solutions_rec(eid, solution_prefix);
solution_prefix.pop();
solution_prefix.push(true);
self.generate_new_solutions_rec(eid, solution_prefix);
solution_prefix.pop();
}
} else {
println!("SOLUTION:");
for (channel_id, assignment) in self.ekey_channel_ids.iter().zip(solution_prefix.iter())
{
println!("{:?} => {:?}", channel_id, assignment);
}
// SOLUTION COMPLETE!
return;
}
}
fn machine_assignment_for(&self, machine_eid: usize, channel_id: ChannelId) -> Option<bool> {
let test = move |bitset: &BitSet| bitset.test(machine_eid);
self.ecs
.assignments
.get(&(channel_id, true))
.map(test)
.or_else(move || self.ecs.assignments.get(&(channel_id, false)).map(test))
}
fn feed_msg(&mut self, payload_eid: usize, ekey: usize) {
// 1. identify the component who:
// * is blocked on this ekey,
// * and has a predicate at least as strict as that of this payload
let mut slice_builder = vec![];
let ekey_bitset =
self.ecs.ekeys.get_mut(&ekey).expect("Payload sets this => cannot be empty");
slice_builder.push(ekey_bitset.as_slice());
for bitset in self.ecs.assignments.values() {
// it doesn't matter which assignment! just that this payload sets it too
if bitset.test(payload_eid) {
slice_builder.push(bitset.as_slice());
}
}
let chunk_iter =
InAllExceptIter::new(slice_builder.as_slice(), self.ecs.payloads.as_slice());
let mut iter = BitChunkIter::new(chunk_iter);
if let Some(machine_eid) = iter.next() {
// TODO is it possible for there to be 2+ iterations? I'm thinking No
// RUN THIS MACHINE
ekey_bitset.unset(machine_eid);
self.ecs.to_run_w.set(machine_eid);
}
}
}
struct InAllExceptIter<'a> {
next_chunk_index: usize,
in_all: &'a [&'a [u32]],
except: &'a [u32],
}
impl<'a> InAllExceptIter<'a> {
fn new(in_all: &'a [&'a [u32]], except: &'a [u32]) -> Self {
Self { in_all, except, next_chunk_index: 0 }
}
}
impl<'a> Iterator for InAllExceptIter<'a> {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
let i = self.next_chunk_index;
self.next_chunk_index += 1;
let init = self.except.get(i).map(move |&x| !x).or(Some(1));
self.in_all.iter().fold(init, move |folding, slice| {
let a = folding?;
let b = slice.get(i).copied().unwrap_or(0);
Some(a & !b)
})
}
}
struct InNoneExceptIter<'a> {
next_chunk_index: usize,
in_none: &'a [&'a [u32]],
except: &'a [u32],
}
impl<'a> InNoneExceptIter<'a> {
fn new(in_none: &'a [&'a [u32]], except: &'a [u32]) -> Self {
Self { in_none, except, next_chunk_index: 0 }
}
}
impl<'a> Iterator for InNoneExceptIter<'a> {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
let i = self.next_chunk_index;
self.next_chunk_index += 1;
let init = self.except.get(i).copied()?;
Some(self.in_none.iter().fold(init, move |folding, slice| {
let a = folding;
let b = slice.get(i).copied().unwrap_or(0);
a & !b
}))
}
}
/*
The idea is we have a set of component machines that fork whenever they reflect on the oracle to make concrete their predicates.
their speculative execution procedure BLOCKS whenever they reflect on the contents of a message that has not yet arrived.
the promise is, therefore, never to forget about these blocked machines.
the only event that unblocks a machine
operations needed:
1. FORK
given a component and a predicate,
create and retain a clone of the component, and the predicate, with one additional assignment
2. GET
when running a machine with {state S, predicate P}, it may try to get a message at K.
IF there exists a payload at K with predicate P2 s.t. P2 >= P, feed S the message and continue.
ELSE list (S,P,K) as BLOCKED and...
for all payloads X at K with predicate P2 s.t. P2 < P, fork S to create S2. store it with predicate P2 and feed it X and continue
2. RECV
when receiving a payload at key K with predicate P,
IF there exists a payload at K with predicate P2 where P2 >= P, discard the new one and continue.
ELSE if there exists a payload at K with predicate P2 where P2 < P, assert their contents are identical, overwrite P2 with P try feed this payload to any BLOCKED machines
ELSE insert this payload with P and K as a new payload, and feed it to any compatible machines blocked on K
====================
EXTREME approach:
1. entities: {states} U {payloads}
2. ecs: {}
==================
*/
impl Debug for FlagMatrix {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
for r in 0..self.dims[0] {
write!(f, "|")?;
for c in 0..self.dims[1] {
write!(
f,
"{}",
match self.test([r, c]) {
false => '0',
true => '1',
}
)?;
}
write!(f, "|\n")?;
}
Ok(())
}
}
// invariant: all bits outside of 0..columns and 0..rows BUT in the allocated space are ZERO
struct FlagMatrix {
bytes: *mut u32,
u32s_total: usize,
u32s_per_row: usize,
dims: [usize; 2],
}
#[inline(always)]
fn ceiling_to_mul_32(value: usize) -> usize {
(value + 31) & !31
}
impl Drop for FlagMatrix {
fn drop(&mut self) {
let layout = Self::layout_for(self.u32s_total);
unsafe {
// ?
std::alloc::dealloc(self.bytes as *mut u8, layout);
}
}
}
impl FlagMatrix {
fn get_dims(&self) -> &[usize; 2] {
&self.dims
}
fn set_entire_row(&mut self, row: usize) {
assert!(row < self.dims[0]);
let mut cols_left = self.dims[1];
unsafe {
let mut ptr = self.bytes.add(self.offset_of_chunk_unchecked([row, 0]));
while cols_left >= 32 {
*ptr = !0u32;
cols_left -= 32;
ptr = ptr.add(1);
}
if cols_left > 0 {
// jagged chunk!
*ptr |= (!0) >> (32 - cols_left);
}
}
}
fn unset_entire_row(&mut self, row: usize) {
assert!(row < self.dims[0]);
let mut cols_left = self.dims[1];
unsafe {
let mut ptr = self.bytes.add(self.offset_of_chunk_unchecked([row, 0]));
while cols_left > 0 {
*ptr = 0u32;
cols_left -= 32;
ptr = ptr.add(1);
}
}
}
fn reshape(&mut self, new_dims: [usize; 2]) {
dbg!(self.u32s_total, self.u32s_per_row);
// 1. calc new u32s_per_row
let new_u32s_per_row = match ceiling_to_mul_32(new_dims[1]) / 32 {
min if min > self.u32s_per_row => Some(min * 2),
_ => None,
};
// 2. calc new u32s_total
let new_u32s_total = match new_u32s_per_row.unwrap_or(self.u32s_per_row) * new_dims[0] {
min if min > self.u32s_total => Some(min * 2),
_ => None,
};
// 3. set any bits no longer in columns to zero
let new_last_chunk_zero_prefix = new_dims[1] % 32;
if new_dims[1] < self.dims[1] {
let old_min_u32_per_row = ceiling_to_mul_32(new_dims[1]) / 32;
let new_min_u32_per_row = ceiling_to_mul_32(self.dims[1]) / 32;
let common_rows = self.dims[0].min(new_dims[0]);
if old_min_u32_per_row < new_min_u32_per_row {
// zero chunks made entirely of removed columns
for row in 0..common_rows {
unsafe {
self.bytes
.add(self.offset_of_chunk_unchecked([row, old_min_u32_per_row]))
.write_bytes(0u8, new_min_u32_per_row - old_min_u32_per_row);
}
}
}
if new_last_chunk_zero_prefix > 0 {
// wipe out new_last_chunk_zero_prefix-most significant bits of all new last column chunks
let mask: u32 = !0u32 >> new_last_chunk_zero_prefix;
for row in 0..common_rows {
let o_of = self.offset_of_chunk_unchecked([row, new_min_u32_per_row - 1]);
unsafe { *self.bytes.add(o_of) &= mask };
}
}
}
// 4. if we won't do a new allocation, zero any bit no longer in rows
if new_dims[0] < self.dims[0] && new_u32s_total.is_none() {
// zero all bytes from beginning of first removed row,
// to end of last removed row
unsafe {
self.bytes
.add(self.offset_of_chunk_unchecked([new_dims[0], 0]))
.write_bytes(0u8, self.u32s_per_row * (self.dims[0] - new_dims[0]));
}
}
dbg!(new_u32s_per_row, new_u32s_total);
match [new_u32s_per_row, new_u32s_total] {
[None, None] => { /* do nothing */ }
[None, Some(new_u32s_total)] => {
// realloc only! column alignment is still OK
// assert!(new_u32s_total > self.u32s_total);
let old_layout = Self::layout_for(self.u32s_total);
let new_layout = Self::layout_for(new_u32s_total);
let new_bytes = unsafe {
let new_bytes = std::alloc::alloc(new_layout) as *mut u32;
// copy the previous total
self.bytes.copy_to_nonoverlapping(new_bytes, self.u32s_total);
// and zero the remainder
new_bytes
.add(self.u32s_total)
.write_bytes(0u8, new_u32s_total - self.u32s_total);
// drop the previous buffer
std::alloc::dealloc(self.bytes as *mut u8, old_layout);
new_bytes
};
self.bytes = new_bytes;
println!("AFTER {:?}", self.bytes);
self.u32s_total = new_u32s_total;
}
[Some(new_u32s_per_row), None] => {
// shift only!
// assert!(new_u32s_per_row > self.u32s_per_row);
for r in (0..self.dims[0]).rev() {
// iterate in REVERSE order because new row[n] may overwrite old row[n+m]
unsafe {
let src = self.bytes.add(r * self.u32s_per_row);
let dest = self.bytes.add(r * new_u32s_per_row);
// copy the used prefix
src.copy_to(dest, self.u32s_per_row);
// and zero the remainder
dest.add(self.u32s_per_row)
.write_bytes(0u8, new_u32s_per_row - self.u32s_per_row);
}
}
self.u32s_per_row = new_u32s_per_row;
}
[Some(new_u32s_per_row), Some(new_u32s_total)] => {
// alloc AND shift!
// assert!(new_u32s_total > self.u32s_total);
// assert!(new_u32s_per_row > self.u32s_per_row);
let old_layout = Self::layout_for(self.u32s_total);
let new_layout = Self::layout_for(new_u32s_total);
let new_bytes = unsafe { std::alloc::alloc(new_layout) as *mut u32 };
for r in 0..self.dims[0] {
// iterate forwards over rows!
unsafe {
let src = self.bytes.add(r * self.u32s_per_row);
let dest = new_bytes.add(r * new_u32s_per_row);
// copy the used prefix
src.copy_to_nonoverlapping(dest, self.u32s_per_row);
// and zero the remainder
dest.add(self.u32s_per_row)
.write_bytes(0u8, new_u32s_per_row - self.u32s_per_row);
}
}
let fresh_rows_at = self.dims[0] * new_u32s_per_row;
unsafe {
new_bytes.add(fresh_rows_at).write_bytes(0u8, new_u32s_total - fresh_rows_at);
}
unsafe { std::alloc::dealloc(self.bytes as *mut u8, old_layout) };
self.u32s_per_row = new_u32s_per_row;
self.bytes = new_bytes;
self.u32s_total = new_u32s_total;
}
}
self.dims = new_dims;
}
fn layout_for(u32s_total: usize) -> std::alloc::Layout {
unsafe {
// this layout is ALWAYS valid:
// 1. size is always nonzero
// 2. size is always a multiple of 4 and 4-aligned
std::alloc::Layout::from_size_align_unchecked(4 * u32s_total.max(1), 4)
}
}
fn new(dims: [usize; 2], extra_dim_space: [usize; 2]) -> Self {
let u32s_per_row = ceiling_to_mul_32(dims[1] + extra_dim_space[1]) / 32;
let u32s_total = u32s_per_row * (dims[0] + extra_dim_space[0]);
let layout = Self::layout_for(u32s_total);
let bytes = unsafe {
// allocate
let bytes = std::alloc::alloc(layout) as *mut u32;
// and zero
bytes.write_bytes(0u8, u32s_total);
bytes
};
Self { bytes, u32s_total, u32s_per_row, dims }
}
fn assert_within_bounds(&self, at: [usize; 2]) {
assert!(at[0] < self.dims[0]);
assert!(at[1] < self.dims[1]);
}
#[inline(always)]
fn offset_of_chunk_unchecked(&self, at: [usize; 2]) -> usize {
(self.u32s_per_row * at[0]) + at[1] / 32
}
#[inline(always)]
fn offsets_unchecked(&self, at: [usize; 2]) -> [usize; 2] {
let of_chunk = self.offset_of_chunk_unchecked(at);
let in_chunk = at[1] % 32;
[of_chunk, in_chunk]
}
fn set(&mut self, at: [usize; 2]) {
self.assert_within_bounds(at);
let [o_of, o_in] = self.offsets_unchecked(at);
unsafe { *self.bytes.add(o_of) |= 1 << o_in };
}
fn unset(&mut self, at: [usize; 2]) {
self.assert_within_bounds(at);
let [o_of, o_in] = self.offsets_unchecked(at);
unsafe { *self.bytes.add(o_of) &= !(1 << o_in) };
}
fn test(&self, at: [usize; 2]) -> bool {
self.assert_within_bounds(at);
let [o_of, o_in] = self.offsets_unchecked(at);
unsafe { *self.bytes.add(o_of) & (1 << o_in) != 0 }
}
unsafe fn copy_chunk_unchecked(&self, row: usize, col_chunk_index: usize) -> u32 {
let o_of = (self.u32s_per_row * row) + col_chunk_index;
*self.bytes.add(o_of)
}
/// return an efficient interator over column indices c in the range 0..self.dims[1]
/// where self.test([t_row, c]) && f_rows.iter().all(|&f_row| !self.test([f_row, c]))
fn col_iter_t1fn<'a, 'b: 'a>(
&'a self,
t_row: usize,
f_rows: &'b [usize],
) -> impl Iterator<Item = usize> + 'a {
// 1. ensure all ROWS indices are in range.
assert!(t_row < self.dims[0]);
for &f_row in f_rows.iter() {
assert!(f_row < self.dims[0]);
}
// 2. construct an unsafe iterator over chunks
// column_chunk_range ensures all col_chunk_index values are in range.
let column_chunk_range = 0..ceiling_to_mul_32(self.dims[1]) / 32;
let chunk_iter = column_chunk_range.map(move |col_chunk_index| {
// SAFETY: all rows and columns have already been bounds-checked.
let t_chunk = unsafe { self.copy_chunk_unchecked(t_row, col_chunk_index) };
f_rows.iter().fold(t_chunk, |chunk, &f_row| {
let f_chunk = unsafe { self.copy_chunk_unchecked(f_row, col_chunk_index) };
chunk & !f_chunk
})
});
// 3. yield columns indices from the chunk iterator
BitChunkIter::new(chunk_iter)
}
}
// trait RwMatrixBits {
// fn set(&mut self, at: [usize;2]);
// fn unset(&mut self, at: [usize;2]);
// fn set_entire_row(&mut self, row: usize);
// fn unset_entire_row(&mut self, row: usize);
// }
// struct MatrixRefW<'a> {
// _inner: usize,
// }
// impl<'a> MatrixRefW<'a> {
// }
#[test]
fn matrix() {
let mut m = FlagMatrix::new([6, 6], [0, 0]);
for i in 0..5 {
m.set([0, i]);
m.set([i, i]);
}
m.set_entire_row(5);
println!("{:?}", &m);
m.reshape([6, 40]);
let iter = m.col_iter_t1fn(0, &[1, 2, 3]);
for c in iter {
println!("{:?}", c);
}
println!("{:?}", &m);
}
|