Files @ cf26538b25dc
Branch filter:

Location: CSY/reowolf/src/runtime2/connector.rs

cf26538b25dc 30.7 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
architecture for send/recv ports in place
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
use std::collections::HashMap;

use crate::{PortId, ProtocolDescription};
use crate::protocol::{ComponentState, RunContext, RunResult};
use crate::protocol::eval::{Prompt, Value, ValueGroup};
use crate::runtime2::inbox::{Inbox, OutboxMessage};
use crate::runtime2::port::PortIdLocal;

/// Represents the identifier of a branch (the index within its container). An
/// ID of `0` generally means "no branch" (e.g. no parent, or a port did not
/// yet receive anything from any branch).
#[derive(Clone, Copy, PartialEq, Eq)]
pub(crate) struct BranchId {
    pub index: u32,
}

impl BranchId {
    fn new_invalid() -> Self {
        Self{ index: 0 }
    }

    fn new(index: u32) -> Self {
        debug_assert!(index != 0);
        Self{ index }
    }

    #[inline]
    fn is_valid(&self) -> bool {
        return self.index != 0;
    }
}

#[derive(PartialEq, Eq)]
pub(crate) enum SpeculativeState {
    // Non-synchronous variants
    RunningNonSync,         // regular execution of code
    Error,                  // encountered a runtime error
    Finished,               // finished executing connector's code
    // Synchronous variants
    RunningInSync,          // running within a sync block
    HaltedAtBranchPoint,    // at a branching point (at a `get` call)
    ReachedSyncEnd,         // reached end of sync block, branch represents a local solution
    Inconsistent,           // branch can never represent a local solution, so halted
}

pub(crate) struct Branch {
    index: BranchId,
    parent_index: BranchId,
    // Code execution state
    code_state: ComponentState,
    sync_state: SpeculativeState,
    next_branch_in_queue: Option<u32>,
    // Message/port state
    inbox: HashMap<PortIdLocal, OutboxMessage>, // TODO: @temporary, remove together with fires()
    ports_delta: Vec<PortOwnershipDelta>,
}

impl Branch {
    /// Constructs a non-sync branch. It is assumed that the code is at the
    /// first instruction
    fn new_initial_branch(component_state: ComponentState) -> Self {
        Branch{
            index: BranchId::new_invalid(),
            parent_index: BranchId::new_invalid(),
            code_state: component_state,
            sync_state: SpeculativeState::RunningNonSync,
            next_branch_in_queue: None,
            inbox: HashMap::new(),
            ports_delta: Vec::new(),
        }
    }

    /// Constructs a sync branch. The provided branch is assumed to be the
    /// parent of the new branch within the execution tree.
    fn new_sync_branching_from(new_index: u32, parent_branch: &Branch) -> Self {
        debug_assert!(
            (parent_branch.sync_state == SpeculativeState::RunningNonSync && !parent_branch.parent_index.is_valid()) ||
            (parent_branch.sync_state == SpeculativeState::HaltedAtBranchPoint)
        );

        Branch{
            index: BranchId::new(new_index),
            parent_index: parent_branch.index,
            code_state: parent_branch.code_state.clone(),
            sync_state: SpeculativeState::RunningInSync,
            next_branch_in_queue: None,
            inbox: parent_branch.inbox.clone(),
            ports_delta: parent_branch.ports_delta.clone(),
        }
    }
}

#[derive(Clone)]
struct PortAssignment {
    is_assigned: bool,
    last_registered_branch_id: BranchId, // invalid branch ID implies not assigned yet
    num_times_fired: u32,
}

impl PortAssignment {
    fn new_unassigned() -> Self {
        Self{
            is_assigned: false,
            last_registered_branch_id: BranchId::new_invalid(),
            num_times_fired: 0,
        }
    }

    #[inline]
    fn mark_speculative(&mut self, num_times_fired: u32) {
        debug_assert!(!self.last_registered_branch_id.is_valid());
        self.is_assigned = true;
        self.num_times_fired = num_times_fired;
    }

    #[inline]
    fn mark_definitive(&mut self, branch_id: BranchId, num_times_fired: u32) {
        self.is_assigned = true;
        self.last_registered_branch_id = branch_id;
        self.num_times_fired = num_times_fired;
    }
}

#[derive(Clone, Eq)]
struct PortOwnershipDelta {
    acquired: bool, // if false, then released ownership
    port_id: PortIdLocal,
}

enum PortOwnershipError {
    UsedInInteraction(PortIdLocal),
    AlreadyGivenAway(PortIdLocal)
}

/// As the name implies, this contains a description of the ports associated
/// with a connector.
/// TODO: Extend documentation
struct ConnectorPorts {
    // Essentially a mapping from `port_index` to `port_id`.
    owned_ports: Vec<PortIdLocal>,
    // Contains P*B entries, where P is the number of ports and B is the number
    // of branches. One can find the appropriate mapping of port p at branch b
    // at linear index `b*P+p`.
    port_mapping: Vec<PortAssignment>
}

impl ConnectorPorts {
    /// Constructs the initial ports object. Assumes the presence of the
    /// non-sync branch at index 0. Will initialize all entries for the non-sync
    /// branch.
    fn new(owned_ports: Vec<PortIdLocal>) -> Self {
        let num_ports = owned_ports.len();
        let mut port_mapping = Vec::with_capacity(num_ports);
        for _ in 0..num_ports {
            port_mapping.push(PortAssignment::new_unassigned());
        }

        Self{ owned_ports, port_mapping }
    }

    /// Prepares the port mapping for a new branch. Assumes that there is no
    /// intermediate branch index that we have skipped.
    fn prepare_sync_branch(&mut self, parent_branch_idx: u32, new_branch_idx: u32) {
        let num_ports = self.owned_ports.len();
        let parent_base_idx = parent_branch_idx as usize * num_ports;
        let new_base_idx = new_branch_idx as usize * num_ports;

        debug_assert!(parent_branch_idx < new_branch_idx);
        debug_assert!(new_base_idx == self.port_mapping.len());

        self.port_mapping.reserve(num_ports);
        for offset in 0..num_ports {
            let parent_port = &self.port_mapping[parent_base_idx + offset];
            self.port_mapping.push(parent_port.clone());
        }
    }

    /// Removes a particular port from the connector. May only be done if the
    /// connector is in non-sync mode
    fn remove_port(&mut self, port_id: PortIdLocal) {
        debug_assert!(self.port_mapping.len() == self.owned_ports.len()); // in non-sync mode
        let port_index = self.get_port_index(port_id).unwrap();
        self.owned_ports.remove(port_index);
        self.port_mapping.remove(port_index);
    }

    /// Retrieves the index associated with a port id. Note that the port might
    /// not exist (yet) if a speculative branch has just received the port.
    /// TODO: But then again, one cannot use that port, right?
    #[inline]
    fn get_port_index(&self, port_id: PortIdLocal) -> Option<usize> {
        for (idx, port) in self.owned_ports.iter().enumerate() {
            if port == port_id {
                return Some(idx)
            }
        }

        return None
    }

    #[inline]
    fn get_port(&self, branch_idx: u32, port_idx: usize) -> &PortAssignment {
        let mapped_idx = self.mapped_index(branch_idx, port_idx);
        return &self.port_mapping[mapped_idx];
    }

    #[inline]
    fn get_port_mut(&mut self, branch_idx: u32, port_idx: usize) -> &mut PortAssignment {
        let mapped_idx = self.mapped_index(branch_idx, port_idx);
        return &mut self.port_mapping(mapped_idx);
    }

    fn num_ports(&self) -> usize {
        return self.owned_ports.len();
    }


    // Function for internal use: retrieve index in flattened port mapping array
    // based on branch/port index.
    #[inline]
    fn mapped_index(&self, branch_idx: u32, port_idx: usize) -> usize {
        let branch_idx = branch_idx as usize;
        let num_ports = self.owned_ports.len();

        debug_assert!(port_idx < num_ports);
        debug_assert!((branch_idx + 1) * num_ports <= self.port_mapping.len());

        return branch_idx * num_ports + port_idx;
    }
}

struct BranchQueue {
    first: u32,
    last: u32,
}

impl BranchQueue {
    fn new() -> Self {
        Self{ first: 0, last: 0 }
    }

    fn is_empty(&self) -> bool {
        debug_assert!((self.first == 0) == (self.last == 0));
        return self.first == 0;
    }
}

/// Public fields of the connector that can be freely shared between multiple
/// threads. Note that this is not enforced by the compiler. The global store
/// allows retrieving the entire `Connector` as a mutable reference by one
/// thread, and this `ConnectorPublic` by any number of threads.
pub(crate) struct ConnectorPublic {
    pub inbox: Inbox,
}

impl ConnectorPublic {
    pub fn new() -> Self {
        ConnectorPublic{
            inbox: Inbox::new(),
        }
    }
}

// TODO: Maybe prevent false sharing by aligning `public` to next cache line.
pub(crate) struct Connector {
    // State and properties of connector itself
    id: u32,
    in_sync: bool,
    // Branch management
    branches: Vec<Branch>, // first branch is always non-speculative one
    sync_active: BranchQueue,
    sync_pending_get: BranchQueue,
    sync_finished: BranchQueue,
    // Port/message management
    pub ports: ConnectorPorts,
    pub public: ConnectorPublic,
}

struct TempCtx {}
impl RunContext for TempCtx {
    fn did_put(&mut self, port: PortId) -> bool {
        todo!()
    }

    fn get(&mut self, port: PortId) -> Option<ValueGroup> {
        todo!()
    }

    fn fires(&mut self, port: PortId) -> Option<Value> {
        todo!()
    }

    fn get_channel(&mut self) -> Option<(Value, Value)> {
        todo!()
    }
}

impl Connector {
    /// Constructs a representation of a connector. The assumption is that the
    /// initial branch is at the first instruction of the connector's code,
    /// hence is in a non-sync state.
    pub fn new(id: u32, initial_branch: Branch, owned_ports: Vec<PortIdLocal>) -> Self {
        Self{
            id,
            in_sync: false,
            branches: vec![initial_branch],
            sync_active: BranchQueue::new(),
            sync_pending_get: BranchQueue::new(),
            sync_finished: BranchQueue::new(),
            ports: ConnectorPorts::new(owned_ports),
            public: ConnectorPublic::new(),
        }
    }

    pub fn is_in_sync_mode(&self) -> bool {
        return self.in_sync;
    }

    /// Runs the connector in synchronous mode. Potential changes to the global
    /// system's state are added to the `RunDeltaState` object by the connector,
    /// where it is the caller's responsibility to immediately take care of
    /// those changes. The return value indicates when (and if) the connector
    /// needs to be scheduled again.
    pub fn run_in_speculative_mode(&mut self, pd: &ProtocolDescription, results: &mut RunDeltaState) -> ConnectorScheduling {
        debug_assert!(self.in_sync);
        debug_assert!(!self.sync_active.is_empty());

        let branch = Self::pop_branch(&mut self.branches, &mut self.sync_active);

        // Run the branch to the next blocking point
        let mut run_context = TempCtx{};
        let run_result = branch.code_state.run(&mut run_context, pd);

        // Match statement contains `return` statements only if the particular
        // run result behind handled requires an immediate re-run of the
        // connector.
        match run_result {
            RunResult::BranchInconsistent => {
                // Speculative branch became inconsistent
                branch.sync_state = SpeculativeState::Inconsistent;
            },
            RunResult::BranchMissingPortState(port_id) => {
                // Branch called `fires()` on a port that does not yet have an
                // assigned speculative value. So we need to create those
                // branches
                let local_port_id = PortIdLocal::new(port_id.0.u32_suffix);
                let local_port_index = self.ports.get_port_index(local_port_id).unwrap();

                debug_assert!(self.ports.owned_ports.contains(&local_port_id));
                let silent_branch = &*branch;

                // Create a copied branch who will have the port set to firing
                let firing_index = self.branches.len() as u32;
                let mut firing_branch = Branch::new_sync_branching_from(firing_index, silent_branch);
                self.ports.prepare_sync_branch(branch.index.index, firing_index);

                let firing_port = self.ports.get_port_mut(firing_index, local_port_index);
                firing_port.mark_speculative(1);

                // Assign the old branch a silent value
                let silent_port = self.ports.get_port_mut(silent_branch.index.index, local_port_index);
                silent_port.mark_speculative(0);

                // Run both branches again
                Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, silent_branch.index);
                Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, firing_branch.index);
                self.branches.push(firing_branch);

                return ConnectorScheduling::Immediate;
            },
            RunResult::BranchMissingPortValue(port_id) => {
                // Branch performed a `get` on a port that has not yet received
                // a value in its inbox.
                let local_port_id = PortIdLocal::new(port_id.0.u32_suffix);
                let local_port_index = self.ports.get_port_index(local_port_id);
                if local_port_index.is_none() {
                    todo!("deal with the case where the port is acquired");
                }
                let local_port_index = local_port_index.unwrap();
                let port_mapping = self.ports.get_port_mut(branch.index.index, local_port_index);

                // Check for port mapping assignment and, if present, if it is
                // consistent
                let is_valid_get = if port_mapping.is_assigned {
                    assert!(port_mapping.num_times_fired <= 1); // temporary, until we get rid of `fires`
                    port_mapping.num_times_fired == 1
                } else {
                    // Not yet assigned
                    port_mapping.mark_speculative(1);
                    true
                };

                if is_valid_get {
                    // Mark as a branching point for future messages
                    branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
                    Self::push_branch_into_queue(&mut self.branches, &mut self.sync_pending_get, branch.index);

                    // But if some messages can be immediately applied, do so
                    // now.
                    let messages = self.inbox.get_messages(local_port_id, port_mapping.last_registered_branch_id);
                    if !messages.is_empty() {
                        // TODO: If message contains ports, transfer ownership of port.
                        for message in messages {
                            // For each message, for the execution and feed it
                            // the provided message
                            let new_branch_index = self.branches.len() as u32;
                            let mut new_branch = Branch::new_sync_branching_from(new_branch_index, branch);
                            self.ports.prepare_sync_branch(branch.index.index, new_branch_index);

                            let port_mapping = self.ports.get_port_mut(new_branch_index, local_port_index);
                            port_mapping.last_registered_branch_id = message.sender_cur_branch_id;
                            debug_assert!(port_mapping.is_assigned && port_mapping.num_times_fired == 1);

                            new_branch.inbox.insert(local_port_id, message.clone());

                            // Schedule the new branch
                            debug_assert!(new_branch.sync_state == SpeculativeState::RunningInSync);
                            Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, new_branch.index);
                            self.branches.push(new_branch);
                        }

                        // Because we have new branches to run, schedule
                        // immediately
                        return ConnectorScheduling::Immediate;
                    }
                } else {
                    branch.sync_state = SpeculativeState::Inconsistent;
                }
            },
            RunResult::BranchAtSyncEnd => {
                // Branch is done, go through all of the ports that are not yet
                // assigned and modify them to be
                for port_idx in 0..self.ports.num_ports() {
                    let port_mapping = self.ports.get_port_mut(branch.index.index, port_idx);
                    if !port_mapping.is_assigned {
                        port_mapping.mark_speculative(0);
                    }
                }

                branch.sync_state = SpeculativeState::ReachedSyncEnd;
                Self::push_branch_into_queue(&mut self.branches, &mut self.sync_finished, branch.index);
            },
            RunResult::BranchPut(port_id, value_group) => {
                // Branch performed a `put` on a particualar port.
                let local_port_id = PortIdLocal{ index: port_id.0.u32_suffix };
                let local_port_index = self.ports.get_port_index(local_port_id);
                if local_port_index.is_none() {
                    todo!("handle case where port was received before (i.e. in ports_delta)")
                }
                let local_port_index = local_port_index.unwrap();

                // Check the port mapping for consistency
                // TODO: For now we can only put once, so that simplifies stuff
                let port_mapping = self.ports.get_port_mut(branch.index.index, local_port_index);
                let is_valid_put = if port_mapping.is_assigned {
                    // Already assigned, so must be speculative and one time
                    // firing, otherwise we are `put`ing multiple times.
                    if port_mapping.last_registered_branch_id.is_valid() {
                        // Already did a `put`
                        todo!("handle error through RunDeltaState");
                    } else {
                        // Valid if speculatively firing
                        port_mapping.num_times_fired == 1
                    }
                } else {
                    // Not yet assigned, do so now
                    true
                };

                if is_valid_put {
                    // Put in run results for thread to pick up and transfer to
                    // the correct connector inbox.
                    port_mapping.mark_definitive(branch.index, 1);
                    let message = OutboxMessage {
                        sending_port: local_port_id,
                        sender_prev_branch_id: BranchId::new_invalid(),
                        sender_cur_branch_id: branch.index,
                        message: value_group,
                    };

                    results.outbox.push(message);
                    return ConnectorScheduling::Immediate
                } else {
                    branch.sync_state = SpeculativeState::Inconsistent;
                }
            },
            _ => unreachable!("unexpected run result '{:?}' while running in sync mode", run_result),
        }

        // Not immediately scheduling, so schedule again if there are more
        // branches to run
        if self.sync_active.is_empty() {
            return ConnectorScheduling::NotNow;
        } else {
            return ConnectorScheduling::Later;
        }
    }

    /// Runs the connector in non-synchronous mode.
    pub fn run_in_deterministic_mode(&mut self, pd: &ProtocolDescription, results: &mut RunDeltaState) -> ConnectorScheduling {
        debug_assert!(!self.in_sync);
        debug_assert!(self.sync_active.is_empty() && self.sync_pending_get.is_empty() && self.sync_finished.is_empty());
        debug_assert!(self.branches.len() == 1);

        let branch = &mut self.branches[0];
        debug_assert!(branch.sync_state == SpeculativeState::RunningNonSync);

        let mut run_context = TempCtx{};
        let run_result = branch.code_state.run(&mut run_context, pd);

        match run_result {
            RunResult::ComponentTerminated => {
                // Need to wait until all children are terminated
                // TODO: Think about how to do this?
                branch.sync_state = SpeculativeState::Finished;
                return ConnectorScheduling::NotNow;
            },
            RunResult::ComponentAtSyncStart => {
                // Prepare for sync execution and reschedule immediately
                self.in_sync = true;
                let first_sync_branch = Branch::new_sync_branching_from(1, branch);
                Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, first_sync_branch.index);
                self.branches.push(first_sync_branch);

                return ConnectorScheduling::Later;
            },
            RunResult::NewComponent(definition_id, monomorph_idx, arguments) => {
                // Construction of a new component. Find all references to ports
                // inside of the arguments
                debug_assert!(results.ports.is_empty());
                find_ports_in_value_group(&arguments, &mut results.ports);

                if !results.ports.is_empty() {
                    // Ports changing ownership
                    if let Err(_) = Self::release_ports_during_non_sync(&mut self.ports, branch, &results.ports) {
                        todo!("fatal error handling");
                    }
                }

                // Add connector for later execution
                let new_connector_state = ComponentState {
                    prompt: Prompt::new(&pd.types, &pd.heap, definition_id, monomorph_idx, arguments)
                };
                let new_connector_ports = results.ports.clone(); // TODO: Do something with this
                let new_connector_branch = Branch::new_initial_branch(new_connector_state);
                let new_connector = Connector::new(0, new_connector_branch, new_connector_ports);

                results.new_connectors.push(new_connector);

                return ConnectorScheduling::Later;
            },
            RunResult::NewChannel => {
                // Need to prepare a new channel
                todo!("adding channels to some global context");

                return ConnectorScheduling::Later;
            },
            _ => unreachable!("unexpected run result '{:?}' while running in non-sync mode", run_result),
        }
    }

    // -------------------------------------------------------------------------
    // Internal helpers
    // -------------------------------------------------------------------------

    // Helpers for management of the branches and their internally stored
    // `next_branch_in_queue` and the `BranchQueue` objects. Essentially forming
    // linked lists inside of the vector of branches.

    #[inline]
    fn pop_branch(branches: &mut Vec<Branch>, queue: &mut BranchQueue) -> &mut Branch {
        debug_assert!(queue.first != 0);
        let branch = &mut branches[queue.first as usize];
        *queue.first = branch.next_branch_in_queue.unwrap_or(0);
        branch.next_branch_in_queue = None;

        if *queue.first == 0 {
            // No more entries in queue
            debug_assert_eq!(*queue.last, branch.index.index);
            *queue.last = 0;
        }

        return branch;
    }

    #[inline]
    fn push_branch_into_queue(branches: &mut Vec<Branch>, queue: &mut BranchQueue, to_push: BranchId) {
        debug_assert!(to_push.is_valid());
        let to_push = to_push.index;

        if *queue.last == 0 {
            // No branches in the queue at all
            debug_assert_eq!(*queue.first, 0);
            branches[to_push as usize].next_branch_in_queue = None;
            *queue.first = to_push;
            *queue.last = to_push;
        } else {
            // Pre-existing branch in the queue
            debug_assert_ne!(*queue.first, 0);
            branches[*queue.last as usize].next_branch_in_queue = Some(to_push);
            *queue.last = to_push;
        }
    }

    // Helpers for local port management. Specifically for adopting/losing
    // ownership over ports

    /// Releasing ownership of ports while in non-sync mode. This only occurs
    /// while instantiating new connectors
    fn release_ports_during_non_sync(ports: &mut ConnectorPorts, branch: &mut Branch, port_ids: &[PortIdLocal]) -> Result<(), PortOwnershipError> {
        debug_assert!(!branch.index.is_valid()); // branch in non-sync mode

        for port_id in port_ids {
            // We must own the port, or something is wrong with our code
            todo!("Set up some kind of message router");
            debug_assert!(ports.get_port_index(*port_id).is_some());
            ports.remove_port(*port_id);
        }

        return Ok(())
    }

    /// Releasing ownership of ports during a sync-session. Will provide an
    /// error if the port was already used during a sync block.
    fn release_ports_during_sync(ports: &mut ConnectorPorts, branch: &mut Branch, port_ids: &[PortIdLocal]) -> Result<(), PortOwnershipError> {
        debug_assert!(branch.index.is_valid()); // branch in sync mode

        for port_id in port_ids {
            match ports.get_port_index(*port_id) {
                Some(port_index) => {
                    // We (used to) own the port. Make sure it is not given away
                    // already and not used to put/get data.
                    let port_mapping = ports.get_port(branch.index.index, port_index);
                    if port_mapping.is_assigned && port_mapping.num_times_fired != 0 {
                        // Already used
                        return Err(PortOwnershipError::UsedInInteraction(*port_id));
                    }

                    for delta in &branch.ports_delta {
                        if delta.port_id == port_id {
                            // We cannot have acquired this port, because the
                            // call to `ports.get_port_index` returned an index.
                            debug_assert!(!delta.acquired);
                            return Err(PortOwnershipError::AlreadyGivenAway(*port_id));
                        }
                    }

                    branch.ports_delta.push(PortOwnershipDelta{
                        acquired: false,
                        port_id: *port_id,
                    });
                },
                None => {
                    // Not in port mapping, so we must have acquired it before,
                    // remove the acquirement.
                    let mut to_delete_index: isize = -1;
                    for (delta_idx, delta) in branch.ports_delta.iter().enumerate() {
                        if delta.port_id == *port_id {
                            debug_assert!(delta.acquired);
                            to_delete_index = delta_idx as isize;
                            break;
                        }
                    }

                    debug_assert!(to_delete_index != -1);
                    branch.ports_delta.remove(to_delete_index as usize);
                }
            }
        }

        return Ok(())
    }

    /// Acquiring ports during a sync-session.
    fn acquire_ports_during_sync(ports: &mut ConnectorPorts, branch: &mut Branch, port_ids: &[PortIdLocal]) -> Result<(), PortOwnershipError> {
        debug_assert!(branch.index.is_valid()); // branch in sync mode

        'port_loop: for port_id in port_ids {
            for (delta_idx, delta) in branch.ports_delta.iter().enumerate() {
                if delta.port_id == *port_id {
                    if delta.acquired {
                        // Somehow already received this port.
                        // TODO: @security
                        todo!("take care of nefarious peers");
                    } else {
                        // Sending ports to ourselves
                        debug_assert!(ports.get_port_index(*port_id).is_some());
                        branch.ports_delta.remove(delta_idx);
                        continue 'port_loop;
                    }
                }
            }

            // If here then we can safely acquire the new port
            branch.ports_delta.push(PortOwnershipDelta{
                acquired: true,
                port_id: *port_id,
            });
        }

        return Ok(())
    }
}

/// A data structure passed to a connector whose code is being executed that is
/// used to queue up various state changes that have to be applied after
/// running, e.g. the messages the have to be transferred to other connectors.
// TODO: Come up with a better name
pub(crate) struct RunDeltaState {
    // Variables that allow the thread running the connector to pick up global
    // state changes and try to apply them.
    pub outbox: Vec<OutboxMessage>,
    pub new_connectors: Vec<Connector>,
    // Workspaces
    pub ports: Vec<PortIdLocal>,
}

impl RunDeltaState {
    /// Constructs a new `RunDeltaState` object with the default amount of
    /// reserved memory
    pub fn new() -> Self {
        RunDeltaState{
            outbox: Vec::with_capacity(64),
            new_connectors: Vec::new(),
            ports: Vec::with_capacity(64),
        }
    }
}

pub(crate) enum ConnectorScheduling {
    Immediate,      // Run again, immediately
    Later,          // Schedule for running, at some later point in time
    NotNow,         // Do not reschedule for running
}


/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortIdLocal>) {
    // Helper to check a value for a port and recurse if needed.
    fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortIdLocal>) {
        match value {
            Value::Input(port_id) | Value::Output(port_id) => {
                // This is an actual port
                let cur_port = PortIdLocal::new(port_id.0.u32_suffix);
                for prev_port in ports.iter() {
                    if prev_port == cur_port {
                        // Already added
                        return;
                    }
                }

                ports.push(cur_port);
            },
            Value::Array(heap_pos) |
            Value::Message(heap_pos) |
            Value::String(heap_pos) |
            Value::Struct(heap_pos) |
            Value::Union(_, heap_pos) => {
                // Reference to some dynamic thing which might contain ports,
                // so recurse
                let heap_region = &group.regions[*heap_pos as usize];
                for embedded_value in heap_region {
                    find_port_in_value(group, embedded_value, ports);
                }
            },
            _ => {}, // values we don't care about
        }
    }

    // Clear the ports, then scan all the available values
    ports.clear();
    for value in &value_group.values {
        find_port_in_value(value_group, value, ports);
    }
}