Files
@ cf26538b25dc
Branch filter:
Location: CSY/reowolf/src/runtime2/global_store.rs
cf26538b25dc
7.8 KiB
application/rls-services+xml
architecture for send/recv ports in place
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | use crate::collections::{MpmcQueue, RawVec};
use super::connector::{Connector, ConnectorPublic};
use super::port::{PortIdLocal, Port, PortKind, PortOwnership, Channel};
use std::ptr;
use std::sync::{RwLock, RwLockReadGuard};
/// A kind of token that, once obtained, allows access to a container.
struct ConnectorKey {
index: u32, // of connector
}
/// The registry containing all connectors. The idea here is that when someone
/// owns a `ConnectorKey`, then one has unique access to that connector.
/// Otherwise one has shared access.
///
/// This datastructure is built to be wrapped in a RwLock.
struct ConnectorStore {
inner: RwLock<ConnectorStoreInner>,
}
struct ConnectorStoreInner {
connectors: RawVec<*mut Connector>,
free: Vec<usize>,
}
impl ConnectorStore {
fn with_capacity(capacity: usize) -> Self {
return Self{
inner: RwLock::new(ConnectorStoreInner {
connectors: RawVec::with_capacity(capacity),
free: Vec::with_capacity(capacity),
}),
};
}
/// Retrieves the shared members of the connector.
pub(crate) fn get_shared(&self, connector_id: u32) -> &'static ConnectorPublic {
let lock = self.inner.read().unwrap();
unsafe {
let connector = lock.connectors.get(connector_id as usize);
debug_assert!(!connector.is_null());
return &*connector.public;
}
}
/// Retrieves a particular connector. Only the thread that pulled the
/// associated key out of the execution queue should (be able to) call this.
pub(crate) fn get_mut(&self, key: &ConnectorKey) -> &'static mut Connector {
let lock = self.inner.read().unwrap();
unsafe {
let connector = lock.connectors.get_mut(key.index as usize);
debug_assert!(!connector.is_null());
return *connector as &mut _;
}
}
/// Create a new connector, returning the key that can be used to retrieve
/// and/or queue it.
pub(crate) fn create(&self, connector: Connector) -> ConnectorKey {
let lock = self.inner.write().unwrap();
let index;
if lock.free.is_empty() {
let connector = Box::into_raw(Box::new(connector));
unsafe {
// Cheating a bit here. Anyway, move to heap, store in list
index = lock.connectors.len();
lock.connectors.push(connector);
}
} else {
index = lock.free.pop().unwrap();
unsafe {
let target = lock.connectors.get_mut(index);
debug_assert!(!target.is_null());
ptr::write(*target, connector);
}
}
return ConnectorKey{ index: index as u32 };
}
pub(crate) fn destroy(&self, key: ConnectorKey) {
let lock = self.inner.write().unwrap();
unsafe {
let connector = lock.connectors.get_mut(key.index as usize);
ptr::drop_in_place(*connector);
// Note: but not deallocating!
}
lock.free.push(key.index as usize);
}
}
impl Drop for ConnectorStore {
fn drop(&mut self) {
let lock = self.inner.write().unwrap();
for idx in 0..lock.connectors.len() {
unsafe {
let memory = *lock.connectors.get_mut(idx);
let _ = Box::from_raw(memory); // takes care of deallocation
}
}
}
}
/// The registry of all ports
pub struct PortStore {
inner: RwLock<PortStoreInner>,
}
struct PortStoreInner {
ports: RawVec<Port>,
free: Vec<usize>,
}
impl PortStore {
fn with_capacity(capacity: usize) -> Self {
Self{
inner: RwLock::new(PortStoreInner{
ports: RawVec::with_capacity(capacity),
free: Vec::with_capacity(capacity),
}),
}
}
pub(crate) fn get(&self, key: &ConnectorKey, port_id: PortIdLocal) -> PortRef {
let lock = self.inner.read().unwrap();
debug_assert!(port_id.is_valid());
unsafe {
let port = lock.ports.get_mut(port_id.index as usize);
let port = &mut *port;
debug_assert_eq!(port.owning_connector_id, key.index); // race condition (if they are not equal, which should never happen), better than nothing
return PortRef{ lock, port };
}
}
pub(crate) fn create_channel(&self, creating_connector: Option<u32>) -> Channel {
let mut lock = self.inner.write().unwrap();
// Reserves a new port. Doesn't point it to its counterpart
fn reserve_port(lock: &mut std::sync::RwLockWriteGuard<'_, PortStoreInner>, kind: PortKind, creating_connector: Option<u32>) -> u32 {
let index;
let ownership = if creating_connector.is_some() { PortOwnership::Owned } else { PortOwnership::Unowned };
let connector_id = creating_connector.unwrap_or(0);
if lock.free.is_empty() {
index = lock.ports.len() as u32;
lock.ports.push(Port{
self_id: PortIdLocal::new(index),
peer_id: PortIdLocal::new_invalid(),
kind,
ownership,
owning_connector: connector_id,
peer_connector: connector_id
});
} else {
index = lock.free.pop().unwrap() as u32;
let port = unsafe{ &mut *lock.ports.get_mut(index as usize) };
port.peer_id = PortIdLocal::new_invalid();
port.kind = kind;
port.ownership = ownership;
port.owning_connector = connector_id;
port.peer_connector = connector_id;
}
return index;
}
// Create the ports
let putter_id = reserve_port(&mut lock, PortKind::Putter, creating_connector);
let getter_id = reserve_port(&mut lock, PortKind::Getter, creating_connector);
debug_assert_ne!(putter_id, getter_id);
// Point them to one another
unsafe {
let putter_port = &mut *lock.ports.get_mut(putter_id as usize);
let getter_port = &mut *lock.ports.get_mut(getter_id as usize);
putter_port.peer_id = getter_port.self_id;
getter_port.peer_id = putter_port.self_id;
}
return Channel{ putter_id, getter_id }
}
}
pub struct PortRef<'p> {
lock: RwLockReadGuard<'p, PortStoreInner>,
port: &'static mut Port,
}
impl<'p> std::ops::Deref for PortRef<'p> {
type Target = Port;
fn deref(&self) -> &Self::Target {
return self.port;
}
}
impl<'p> std::ops::DerefMut for PortRef<'p> {
fn deref_mut(&mut self) -> &mut Self::Target {
return self.port;
}
}
impl Drop for PortStore {
fn drop(&mut self) {
let lock = self.inner.write().unwrap();
// Very lazy code
for idx in 0..lock.ports.len() {
if lock.free.contains(&idx) {
continue;
}
unsafe {
let port = lock.ports.get_mut(idx);
std::ptr::drop_in_place(port);
}
}
}
}
/// Global store of connectors, ports and queues that are used by the sceduler
/// threads. The global store has the appearance of a thread-safe datatype, but
/// one needs to be careful using it.
///
/// TODO: @docs
/// TODO: @Optimize, very lazy implementation of concurrent datastructures.
pub struct GlobalStore {
pub connector_queue: MpmcQueue<ConnectorKey>,
pub connectors: ConnectorStore,
pub ports: PortStore,
}
impl GlobalStore {
pub fn new() -> Self {
Self{
connector_queue: MpmcQueue::with_capacity(256),
connectors: ConnectorStore::with_capacity(256),
ports: PortStore::with_capacity(256),
}
}
}
|