Files
@ d06da4e9296c
Branch filter:
Location: CSY/reowolf/src/runtime2/component/component_pdl.rs
d06da4e9296c
29.6 KiB
application/rls-services+xml
WIP: Reimplementing messaging and consensus
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 | use crate::protocol::*;
use crate::protocol::eval::{
PortId as EvalPortId, Prompt,
ValueGroup, Value,
EvalContinuation, EvalResult, EvalError
};
use crate::runtime2::runtime::*;
use crate::runtime2::scheduler::SchedulerCtx;
use crate::runtime2::communication::*;
use super::*;
use super::control_layer::*;
use super::consensus::Consensus;
pub enum CompScheduling {
Immediate,
Requeue,
Sleep,
Exit,
}
pub struct CompCtx {
pub id: CompId,
pub ports: Vec<Port>,
pub peers: Vec<Peer>,
pub messages: Vec<Option<DataMessage>>, // same size as "ports"
pub port_id_counter: u32,
}
impl Default for CompCtx {
fn default() -> Self {
return Self{
id: CompId(0),
ports: Vec::new(),
peers: Vec::new(),
messages: Vec::new(),
port_id_counter: 0,
}
}
}
struct MessageView<'a> {
index: usize,
pub message: &'a DataMessage,
}
impl CompCtx {
fn create_channel(&mut self) -> Channel {
let putter_id = PortId(self.take_port_id());
let getter_id = PortId(self.take_port_id());
self.ports.push(Port{
self_id: putter_id,
peer_id: getter_id,
kind: PortKind::Putter,
state: PortState::Open,
peer_comp_id: self.id,
});
self.ports.push(Port{
self_id: getter_id,
peer_id: putter_id,
kind: PortKind::Getter,
state: PortState::Closed,
peer_comp_id: self.id,
});
return Channel{ putter_id, getter_id };
}
pub(crate) fn get_port(&self, port_id: PortId) -> &Port {
let index = self.get_port_index(port_id).unwrap();
return &self.ports[index];
}
pub(crate) fn get_port_mut(&mut self, port_id: PortId) -> &mut Port {
let index = self.get_port_index(port_id).unwrap();
return &mut self.ports[index];
}
pub(crate) fn get_port_index(&self, port_id: PortId) -> Option<usize> {
for (index, port) in self.ports.iter().enumerate() {
if port.self_id == port_id {
return Some(index);
}
}
return None;
}
pub(crate) fn get_peer(&self, peer_id: CompId) -> &Peer {
let index = self.get_peer_index(peer_id).unwrap();
return &self.peers[index];
}
fn get_peer_mut(&mut self, peer_id: CompId) -> &mut Peer {
let index = self.get_peer_index(peer_id).unwrap();
return &mut self.peers[index];
}
pub(crate) fn get_peer_index(&self, peer_id: CompId) -> Option<usize> {
for (index, peer) in self.peers.iter().enumerate() {
if peer.id == peer_id {
return Some(index);
}
}
return None;
}
fn take_port_id(&mut self) -> u32 {
let port_id = self.port_id_counter;
self.port_id_counter = self.port_id_counter.wrapping_add(1);
return port_id;
}
}
pub enum ExecStmt {
CreatedChannel((Value, Value)),
PerformedPut,
PerformedGet(ValueGroup),
None,
}
impl ExecStmt {
fn take(&mut self) -> ExecStmt {
let mut value = ExecStmt::None;
std::mem::swap(self, &mut value);
return value;
}
fn is_none(&self) -> bool {
match self {
ExecStmt::None => return true,
_ => return false,
}
}
}
pub struct ExecCtx {
stmt: ExecStmt,
}
impl RunContext for ExecCtx {
fn performed_put(&mut self, _port: EvalPortId) -> bool {
match self.stmt.take() {
ExecStmt::None => return false,
ExecStmt::PerformedPut => return true,
_ => unreachable!(),
}
}
fn performed_get(&mut self, _port: EvalPortId) -> Option<ValueGroup> {
match self.stmt.take() {
ExecStmt::None => return None,
ExecStmt::PerformedGet(value) => return Some(value),
_ => unreachable!(),
}
}
fn fires(&mut self, _port: EvalPortId) -> Option<Value> {
todo!("remove fires")
}
fn performed_fork(&mut self) -> Option<bool> {
todo!("remove fork")
}
fn created_channel(&mut self) -> Option<(Value, Value)> {
match self.stmt.take() {
ExecStmt::None => return None,
ExecStmt::CreatedChannel(ports) => return Some(ports),
_ => unreachable!(),
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum Mode {
NonSync, // not in sync mode
Sync, // in sync mode, can interact with other components
SyncFail, // something went wrong during sync mode (deadlocked, error, whatever)
SyncEnd, // awaiting a solution, i.e. encountered the end of the sync block
BlockedGet,
BlockedPut,
}
impl Mode {
fn can_run(&self) -> bool {
match self {
Mode::NonSync | Mode::Sync =>
return true,
Mode::SyncFail | Mode::SyncEnd | Mode::BlockedGet | Mode::BlockedPut =>
return false,
}
}
}
pub(crate) struct CompPDL {
pub mode: Mode,
pub mode_port: PortId, // when blocked on a port
pub mode_value: ValueGroup, // when blocked on a put
pub prompt: Prompt,
pub control: ControlLayer,
pub consensus: Consensus,
pub sync_counter: u32,
pub exec_ctx: ExecCtx,
// TODO: Temporary field, simulates future plans of having one storage place
// reserved per port.
// Should be same length as the number of ports. Corresponding indices imply
// message is intended for that port.
pub inbox_main: Vec<Option<DataMessage>>,
pub inbox_backup: Vec<DataMessage>,
}
impl CompPDL {
pub(crate) fn new(initial_state: Prompt, num_ports: usize) -> Self {
let mut inbox_main = Vec::new();
inbox_main.reserve(num_ports);
for _ in 0..num_ports {
inbox_main.push(None);
}
return Self{
mode: Mode::NonSync,
mode_port: PortId::new_invalid(),
mode_value: ValueGroup::default(),
prompt: initial_state,
control: ControlLayer::default(),
consensus: Consensus::new(),
sync_counter: 0,
exec_ctx: ExecCtx{
stmt: ExecStmt::None,
},
inbox_main,
inbox_backup: Vec::new(),
}
}
pub(crate) fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message) {
sched_ctx.log(&format!("handling message: {:?}", message));
if let Some(new_target) = self.control.should_reroute(&message) {
let target = sched_ctx.runtime.get_component_public(new_target);
target.inbox.push(message);
return;
}
match message {
Message::Data(message) => {
self.handle_incoming_data_message(sched_ctx, comp_ctx, message);
},
Message::Control(message) => {
self.handle_incoming_control_message(sched_ctx, comp_ctx, message);
},
Message::Sync(message) => {
self.handle_incoming_sync_message(sched_ctx, comp_ctx, message);
}
}
}
pub(crate) fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> Result<CompScheduling, EvalError> {
use EvalContinuation as EC;
let can_run = self.mode.can_run();
sched_ctx.log(&format!("Running component (mode: {:?}, can run: {})", self.mode, can_run));
if !can_run {
return Ok(CompScheduling::Sleep);
}
let run_result = self.execute_prompt(&sched_ctx)?;
match run_result {
EC::Stepping => unreachable!(), // execute_prompt runs until this is no longer returned
EC::BranchInconsistent | EC::NewFork | EC::BlockFires(_) => todo!("remove these"),
// Results that can be returned in sync mode
EC::SyncBlockEnd => {
debug_assert_eq!(self.mode, Mode::Sync);
self.handle_sync_end(sched_ctx, comp_ctx);
return Ok(CompScheduling::Immediate);
},
EC::BlockGet(port_id) => {
debug_assert_eq!(self.mode, Mode::Sync);
debug_assert!(self.exec_ctx.stmt.is_none());
let port_id = port_id_from_eval(port_id);
let port_index = comp_ctx.get_port_index(port_id).unwrap();
if let Some(message) = &self.inbox_main[port_index] {
// Check if we can actually receive the message
if self.consensus.try_receive_data_message(message) {
// Message was received. Make sure any blocked peers and
// pending messages are handled.
let message = self.inbox_main[port_index].take().unwrap();
self.exec_ctx.stmt = ExecStmt::PerformedGet(message.content);
return Ok(CompScheduling::Immediate);
} else {
self.mode = Mode::SyncFail;
return Ok(CompScheduling::Sleep);
}
} else {
// We need to wait
self.mode = Mode::BlockedGet;
self.mode_port = port_id;
return Ok(CompScheduling::Sleep);
}
},
EC::Put(port_id, value) => {
debug_assert_eq!(self.mode, Mode::Sync);
let port_id = port_id_from_eval(port_id);
let port_info = comp_ctx.get_port(port_id);
if port_info.state == PortState::Blocked {
todo!("handle blocked port");
}
self.send_data_message_and_wake_up(sched_ctx, comp_ctx, port_id, value);
self.exec_ctx.stmt = ExecStmt::PerformedPut;
return Ok(CompScheduling::Immediate);
},
// Results that can be returned outside of sync mode
EC::ComponentTerminated => {
debug_assert_eq!(self.mode, Mode::NonSync);
return Ok(CompScheduling::Exit);
},
EC::SyncBlockStart => {
debug_assert_eq!(self.mode, Mode::NonSync);
self.handle_sync_start(sched_ctx, comp_ctx);
return Ok(CompScheduling::Immediate);
},
EC::NewComponent(definition_id, monomorph_idx, arguments) => {
debug_assert_eq!(self.mode, Mode::NonSync);
let mut ports = Vec::new(); // TODO: Optimize
let protocol = &sched_ctx.runtime.protocol;
find_ports_in_value_group(&arguments, &mut ports);
let prompt = Prompt::new(
&protocol.types, &protocol.heap,
definition_id, monomorph_idx, arguments
);
self.create_component_and_transfer_ports(sched_ctx, comp_ctx, prompt, &ports);
return Ok(CompScheduling::Requeue);
},
EC::NewChannel => {
debug_assert_eq!(self.mode, Mode::NonSync);
debug_assert!(self.exec_ctx.stmt.is_none());
let channel = comp_ctx.create_channel();
self.exec_ctx.stmt = ExecStmt::CreatedChannel((
Value::Output(port_id_to_eval(channel.putter_id)),
Value::Input(port_id_to_eval(channel.getter_id))
));
return Ok(CompScheduling::Immediate);
}
}
}
fn execute_prompt(&mut self, sched_ctx: &SchedulerCtx) -> EvalResult {
let mut step_result = EvalContinuation::Stepping;
while let EvalContinuation::Stepping = step_result {
step_result = self.prompt.step(
&sched_ctx.runtime.protocol.types, &sched_ctx.runtime.protocol.heap,
&sched_ctx.runtime.protocol.modules, &mut self.exec_ctx,
)?;
}
return Ok(step_result)
}
fn handle_sync_start(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
self.consensus.notify_sync_start(comp_ctx);
debug_assert_eq!(self.mode, Mode::NonSync);
self.mode = Mode::Sync;
}
fn handle_sync_end(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
self.consensus.notify_sync_end();
debug_assert_eq!(self.mode, Mode::Sync);
self.mode = Mode::SyncEnd;
}
fn send_data_message_and_wake_up(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, source_port_id: PortId, value: ValueGroup) {
use std::sync::atomic::Ordering;
let port_info = comp_ctx.get_port(source_port_id);
let peer_info = comp_ctx.get_peer(port_info.peer_comp_id);
let annotated_message = self.consensus.annotate_data_message(comp_ctx, port_info, value);
peer_info.handle.inbox.push(Message::Data(annotated_message));
wake_up_if_sleeping(sched_ctx, peer_info.id, &peer_info.handle);
}
/// Handles a message that came in through the public inbox. This function
/// will handle putting it in the correct place, and potentially blocking
/// the port in case too many messages are being received.
fn handle_incoming_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: DataMessage) {
// Check if we can insert it directly into the storage associated with
// the port
let target_port_id = message.data_header.target_port;
let port_index = comp_ctx.get_port_index(target_port_id).unwrap();
if self.inbox_main[port_index].is_none() {
self.inbox_main[port_index] = Some(message);
// After direct insertion, check if this component's execution is
// blocked on receiving a message on that port
debug_assert_ne!(comp_ctx.ports[port_index].state, PortState::Blocked); // because we could insert directly
if self.mode == Mode::BlockedGet && self.mode_port == target_port_id {
// We were indeed blocked
self.mode = Mode::Sync;
self.mode_port = PortId::new_invalid();
}
return;
}
// The direct inbox is full, so the port will become (or was already) blocked
let port_info = &mut comp_ctx.ports[port_index];
debug_assert!(port_info.state == PortState::Open || port_info.state == PortState::Blocked);
let _peer_comp_id = port_info.peer_comp_id;
if port_info.state == PortState::Open {
let (target_comp_id, block_message) =
self.control.set_port_and_peer_blocked(target_port_id, comp_ctx);
debug_assert_eq!(_peer_comp_id, target_comp_id);
let peer = comp_ctx.get_peer(target_comp_id);
peer.handle.inbox.push(Message::Control(block_message));
wake_up_if_sleeping(sched_ctx, target_comp_id, &peer.handle);
}
// But we still need to remember the message, so:
self.inbox_backup.push(message);
}
/// Handles when a message has been handed off from the inbox to the PDL
/// code. We check to see if there are more messages waiting and, if not,
/// then we handle the case where the port might have been blocked
/// previously.
fn handle_received_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, port_id: PortId) {
let port_index = comp_ctx.get_port_index(port_id).unwrap();
debug_assert!(self.inbox_main[port_index].is_none()); // because we just received it
// Check for any more messages
for message_index in 0..self.inbox_backup.len() {
let message = &self.inbox_backup[message_index];
if message.data_header.target_port == port_id {
// One more message for this port
let message = self.inbox_backup.remove(message_index);
debug_assert_eq!(comp_ctx.get_port(port_id).state, PortState::Blocked); // since we had >1 message on the port
self.inbox_main[port_index] = Some(message);
return;
}
}
// Did not have any more messages. So if we were blocked, then we need
// to send the "unblock" message.
let port_info = &comp_ctx.ports[port_index];
if port_info.state == PortState::Blocked {
let (peer_comp_id, message) = self.control.set_port_and_peer_unblocked(port_id, comp_ctx);
let peer_info = comp_ctx.get_peer(peer_comp_id);
peer_info.handle.inbox.push(Message::Control(message));
wake_up_if_sleeping(sched_ctx, peer_comp_id, &peer_info.handle);
}
}
fn handle_incoming_control_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: ControlMessage) {
match message.content {
ControlMessageContent::Ack => {
let mut to_ack = message.id;
loop {
let action = self.control.handle_ack(to_ack, sched_ctx, comp_ctx);
match action {
AckAction::SendMessageAndAck(target_comp, message, new_to_ack) => {
// FIX @NoDirectHandle
let handle = sched_ctx.runtime.get_component_public(target_comp);
handle.inbox.push(Message::Control(message));
wake_up_if_sleeping(sched_ctx, target_comp, &handle);
to_ack = new_to_ack;
},
AckAction::ScheduleComponent(to_schedule) => {
// FIX @NoDirectHandle
let handle = sched_ctx.runtime.get_component_public(to_schedule);
wake_up_if_sleeping(sched_ctx, to_schedule, &handle);
break;
},
AckAction::None => {
break;
}
}
}
},
ControlMessageContent::BlockPort(port_id) => {
// On of our messages was accepted, but the port should be
// blocked.
let port_info = comp_ctx.get_port_mut(port_id);
debug_assert_eq!(port_info.kind, PortKind::Putter);
if port_info.state != PortState::Closed {
debug_assert_ne!(port_info.state, PortState::Blocked); // implies unnecessary messages
port_info.state = PortState::Blocked;
}
},
ControlMessageContent::ClosePort(port_id) => {
// Request to close the port. We immediately comply and remove
// the component handle as well
let port_index = comp_ctx.get_port_index(port_id).unwrap();
let port_info = &mut comp_ctx.ports[port_index];
let peer_comp_id = port_info.peer_comp_id;
port_info.state = PortState::Closed;
let peer_index = comp_ctx.get_peer_index(peer_comp_id).unwrap();
let peer_info = &mut comp_ctx.peers[peer_index];
peer_info.num_associated_ports -= 1;
if peer_info.num_associated_ports == 0 {
// TODO: @Refactor clean up all these uses of "num_associated_ports"
let should_remove = peer_info.handle.decrement_users();
if should_remove {
let comp_key = unsafe{ peer_info.id.upgrade() };
sched_ctx.runtime.destroy_component(comp_key);
}
comp_ctx.peers.remove(peer_index);
}
}
ControlMessageContent::UnblockPort(port_id) => {
// We were previously blocked (or already closed)
let port_info = comp_ctx.get_port(port_id);
debug_assert_eq!(port_info.kind, PortKind::Putter);
debug_assert!(port_info.state == PortState::Blocked || port_info.state == PortState::Closed);
if port_info.state == PortState::Blocked {
self.unblock_local_port(sched_ctx, comp_ctx, port_id);
}
},
ControlMessageContent::PortPeerChangedBlock(port_id) => {
// The peer of our port has just changed. So we are asked to
// temporarily block the port (while our original recipient is
// potentially rerouting some of the in-flight messages) and
// Ack. Then we wait for the `unblock` call.
debug_assert_eq!(message.target_port_id, Some(port_id));
let port_info = comp_ctx.get_port_mut(port_id);
debug_assert!(port_info.state == PortState::Open || port_info.state == PortState::Blocked);
if port_info.state == PortState::Open {
port_info.state = PortState::Blocked;
}
},
ControlMessageContent::PortPeerChangedUnblock(port_id, new_comp_id) => {
debug_assert_eq!(message.target_port_id, Some(port_id));
let port_info = comp_ctx.get_port_mut(port_id);
debug_assert!(port_info.state == PortState::Blocked);
port_info.peer_comp_id = new_comp_id;
self.unblock_local_port(sched_ctx, comp_ctx, port_id);
}
}
}
fn handle_incoming_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) {
}
/// Marks the local port as being unblocked. If the execution was blocked on
/// sending a message over this port, then execution will continue and the
/// message will be sent.
fn unblock_local_port(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, port_id: PortId) {
let port_info = comp_ctx.get_port_mut(port_id);
debug_assert_eq!(port_info.state, PortState::Blocked);
port_info.state = PortState::Open;
if self.mode == Mode::BlockedPut && port_id == self.mode_port {
// We were blocked on the port that just became unblocked, so
// send the message.
debug_assert_eq!(port_info.kind, PortKind::Putter);
let mut replacement = ValueGroup::default();
std::mem::swap(&mut replacement, &mut self.mode_value);
self.send_data_message_and_wake_up(sched_ctx, comp_ctx, port_id, replacement);
self.mode = Mode::Sync;
self.mode_port = PortId::new_invalid();
}
}
fn create_component_and_transfer_ports(&mut self, sched_ctx: &SchedulerCtx, creator_ctx: &mut CompCtx, prompt: Prompt, ports: &[PortId]) {
let component = CompPDL::new(prompt, ports.len());
let (comp_key, component) = sched_ctx.runtime.create_pdl_component(component, true);
let created_ctx = &mut component.ctx;
let mut has_reroute_entry = false;
let schedule_entry_id = self.control.add_schedule_entry(created_ctx.id);
for port_id in ports.iter().copied() {
// Create temporary reroute entry if the peer is another component
let port_info = creator_ctx.get_port(port_id);
debug_assert_ne!(port_info.state, PortState::Blocked);
if port_info.peer_comp_id == creator_ctx.id {
// We own the peer port. So retrieve it and modify the peer directly
let peer_port_id = port_info.peer_id;
let port_info = creator_ctx.get_port_mut(peer_port_id);
port_info.peer_comp_id = created_ctx.id;
} else {
// We don't own the port, so send the appropriate messages and
// notify the control layer
has_reroute_entry = true;
let message = self.control.add_reroute_entry(
creator_ctx.id, port_info.peer_id, port_info.peer_comp_id,
port_info.self_id, created_ctx.id, schedule_entry_id
);
let peer_info = creator_ctx.get_peer(port_info.peer_comp_id);
peer_info.handle.inbox.push(message);
}
// Transfer port and create temporary reroute entry
let (port_info, peer_info) = Self::remove_port_from_component(creator_ctx, port_id);
if port_info.state == PortState::Blocked {
todo!("Think about this when you're not tired!");
}
Self::add_port_to_component(sched_ctx, created_ctx, port_info);
// Maybe remove peer from the creator
if let Some(mut peer_info) = peer_info {
let remove_from_runtime = peer_info.handle.decrement_users();
if remove_from_runtime {
let removed_comp_key = unsafe{ peer_info.id.upgrade() };
sched_ctx.runtime.destroy_component(removed_comp_key);
}
}
}
if !has_reroute_entry {
// We can schedule the component immediately
self.control.remove_schedule_entry(schedule_entry_id);
sched_ctx.runtime.enqueue_work(comp_key);
} // else: wait for the `Ack`s, they will trigger the scheduling of the component
}
/// Removes a port from a component. Also decrements the port counter in
/// the peer component's entry. If that hits 0 then it will be removed and
/// returned. If returned then the caller is responsible for decrementing
/// the atomic counters of the peer component's handle.
fn remove_port_from_component(comp_ctx: &mut CompCtx, port_id: PortId) -> (Port, Option<Peer>) {
let port_index = comp_ctx.get_port_index(port_id).unwrap();
let port_info = comp_ctx.ports.remove(port_index);
// If the component owns the peer, then we don't have to decrement the
// number of peers (because we don't have an entry for ourselves)
if port_info.peer_comp_id == comp_ctx.id {
return (port_info, None);
}
let peer_index = comp_ctx.get_peer_index(port_info.peer_comp_id).unwrap();
let peer_info = &mut comp_ctx.peers[peer_index];
peer_info.num_associated_ports -= 1;
// Check if we still have other ports referencing this peer
if peer_info.num_associated_ports != 0 {
return (port_info, None);
}
let peer_info = comp_ctx.peers.remove(peer_index);
return (port_info, Some(peer_info));
}
fn add_port_to_component(sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, port_info: Port) {
// Add the port info
let peer_comp_id = port_info.peer_comp_id;
debug_assert!(!comp_ctx.ports.iter().any(|v| v.self_id == port_info.self_id));
comp_ctx.ports.push(port_info);
// Increment counters on peer, or create entry for peer if it doesn't
// exist yet.
match comp_ctx.peers.iter().position(|v| v.id == peer_comp_id) {
Some(peer_index) => {
let peer_info = &mut comp_ctx.peers[peer_index];
peer_info.num_associated_ports += 1;
},
None => {
let handle = sched_ctx.runtime.get_component_public(peer_comp_id);
comp_ctx.peers.push(Peer{
id: peer_comp_id,
num_associated_ports: 1,
handle,
});
}
}
}
fn change_port_peer_component(
&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
port_id: PortId, new_peer_comp_id: CompId
) {
let port_info = comp_ctx.get_port_mut(port_id);
let cur_peer_comp_id = port_info.peer_comp_id;
let cur_peer_info = comp_ctx.get_peer_mut(cur_peer_comp_id);
cur_peer_info.num_associated_ports -= 1;
if cur_peer_info.num_associated_ports == 0 {
let should_remove = cur_peer_info.handle.decrement_users();
if should_remove {
let cur_peer_comp_key = unsafe{ cur_peer_comp_id.upgrade() };
sched_ctx.runtime.destroy_component(cur_peer_comp_key);
}
}
}
}
#[inline]
fn port_id_from_eval(port_id: EvalPortId) -> PortId {
return PortId(port_id.id);
}
#[inline]
fn port_id_to_eval(port_id: PortId) -> EvalPortId {
return EvalPortId{ id: port_id.0 };
}
/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortId>) {
// Helper to check a value for a port and recurse if needed.
fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortId>) {
match value {
Value::Input(port_id) | Value::Output(port_id) => {
// This is an actual port
let cur_port = PortId(port_id.id);
for prev_port in ports.iter() {
if *prev_port == cur_port {
// Already added
return;
}
}
ports.push(cur_port);
},
Value::Array(heap_pos) |
Value::Message(heap_pos) |
Value::String(heap_pos) |
Value::Struct(heap_pos) |
Value::Union(_, heap_pos) => {
// Reference to some dynamic thing which might contain ports,
// so recurse
let heap_region = &group.regions[*heap_pos as usize];
for embedded_value in heap_region {
find_port_in_value(group, embedded_value, ports);
}
},
_ => {}, // values we don't care about
}
}
// Clear the ports, then scan all the available values
ports.clear();
for value in &value_group.values {
find_port_in_value(value_group, value, ports);
}
}
|