Files @ d06da4e9296c
Branch filter:

Location: CSY/reowolf/src/runtime2/component/consensus.rs

d06da4e9296c 26.8 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
mh
WIP: Reimplementing messaging and consensus
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
use crate::protocol::eval::ValueGroup;
use crate::runtime2::scheduler::*;
use crate::runtime2::runtime::*;
use crate::runtime2::communication::*;
use crate::runtime2::component::wake_up_if_sleeping;

use super::component_pdl::*;

pub struct PortAnnotation {
    id: PortId,
    mapping: Option<u32>,
}

impl PortAnnotation {
    fn new(id: PortId) -> Self {
        return Self{ id, mapping: None }
    }
}

#[derive(Eq, PartialEq)]
enum Mode {
    NonSync,
    SyncBusy,
    SyncAwaitingSolution,
}

struct SolutionCombiner {
    solution: SyncPartialSolution,
    all_present: bool, // set if the `submissions_by` only contains (_, true) entries.
}

impl SolutionCombiner {
    fn new() -> Self {
        return Self {
            solution: SyncPartialSolution{
                submissions_by: Vec::new(),
                channel_mapping: Vec::new(),
                decision: RoundDecision::None,
            },
            all_present: false,
        }
    }

    /// Returns a decision for the current round. If there is no decision (yet)
    /// then `RoundDecision::None` is returned.
    fn get_decision(&self) -> RoundDecision {
        if self.all_present {
            debug_assert_ne!(self.solution.decision, RoundDecision::None);
            return self.solution.decision;
        }

        return RoundDecision::None; // even if failure: wait for everyone.
    }

    fn combine_with_partial_solution(&mut self, partial: SyncPartialSolution) {
        // Combine the submission tracking
        for (comp_id, present) in partial.submissions_by {
            self.mark_single_component_submission(comp_id, present);
        }

        debug_assert_ne!(self.solution.decision, RoundDecision::Solution);
        debug_assert_ne!(partial.decision, RoundDecision::Solution);

        // Combine our partial solution with the provided partial solution.
        // This algorithm *could* allow overlap in the partial solutions, but
        // in practice this means something is going wrong (a component stored
        // a local solution *and* transmitted it to the leader, then later
        // submitted its partial solution), hence we will do some debug asserts
        // for now.
        for new_entry in partial.channel_mapping {
            let channel_index = if new_entry.putter.is_some() && new_entry.getter.is_some() {
                // Channel is completely specified
                debug_assert!(
                    self.find_channel_index_for_partial_entry(new_entry.putter.as_ref().unwrap()).is_none() &&
                    self.find_channel_index_for_partial_entry(new_entry.getter.as_ref().unwrap()).is_none()
                );
                let channel_index = self.solution.channel_mapping.len();
                self.solution.channel_mapping.push(new_entry);

                channel_index
            } else if let Some(new_port) = new_entry.putter {
                // Only putter is present in new entry
                match self.find_channel_index_for_partial_entry(&new_port) {
                    Some(channel_index) => {
                        let entry = &mut self.solution.channel_mapping[channel_index];
                        debug_assert!(entry.putter.is_none());
                        entry.putter = Some(new_port);

                        channel_index
                    },
                    None => {
                        let channel_index = self.solution.channel_mapping.len();
                        self.solution.channel_mapping.push(SyncSolutionChannel{
                            putter: Some(new_port),
                            getter: None,
                        });

                        channel_index
                    }
                }
            } else if let Some(new_port) = new_entry.getter {
                // Only getter is present in new entry
                match self.find_channel_index_for_partial_entry(&new_port) {
                    Some(channel_index) => {
                        let entry = &mut self.solution.channel_mapping[channel_index];
                        debug_assert!(entry.getter.is_none());
                        entry.getter = Some(new_port);

                        channel_index
                    },
                    None => {
                        let channel_index = self.solution.channel_mapping.len();
                        self.solution.channel_mapping.push(SyncSolutionChannel{
                            putter: None,
                            getter: Some(new_port)
                        });

                        channel_index
                    }
                }
            } else {
                unreachable!()
            };

            // Make sure the new entry is consistent
            let channel = &self.solution.channel_mapping[channel_index];
            if !Self::channel_is_consistent(channel) {
                self.solution.decision = RoundDecision::Failure;
            }
        }

        // Check to see if we have a global solution already
        self.update_all_present();
        if self.all_present && self.solution.decision != RoundDecision::Failure {
            debug_assert_eq!(self.solution.decision, RoundDecision::None);
            dbg_code!(for entry in &self.solution.channel_mapping {
                    debug_assert!(entry.putter.is_some() && entry.getter.is_some());
                });
            self.solution.decision = RoundDecision::Solution;
        }
    }

    /// Combines the currently stored global solution (if any) with the newly
    /// provided local solution. Make sure to check the `has_decision` return
    /// value afterwards.
    fn combine_with_local_solution(&mut self, comp_id: CompId, solution: SyncLocalSolution) {
        // Mark the contributions of the component and detect components whose
        // submissions we do not yet have
        self.mark_single_component_submission(comp_id, true);
        for entry in solution.iter() {
            self.mark_single_component_submission(entry.peer_comp_id, false);
        }

        debug_assert_ne!(self.solution.decision, RoundDecision::Solution);

        // Go through all entries and check if the submitted local solution is
        // consistent with our partial solution
        let mut had_new_entry = false;
        for entry in solution.iter() {
            let preexisting_index = self.find_channel_index_for_local_entry(comp_id, entry);
            let new_port = SolutionPort{
                self_comp_id: comp_id,
                self_port_id: entry.self_port_id,
                peer_comp_id: entry.peer_comp_id,
                peer_port_id: entry.peer_port_id,
                mapping: entry.mapping,
            };

            match preexisting_index {
                Some(entry_index) => {
                    // Add the local solution's entry to the existing entry in
                    // the global solution. We'll handle any mismatches along
                    // the way.
                    let channel = &mut self.solution.channel_mapping[entry_index];
                    if entry.is_putter {
                        // Getter should be present in existing entry
                        debug_assert!(channel.getter.is_some() && channel.putter.is_none());
                        channel.putter = Some(new_port);
                    } else {
                        // Putter should be present in existing entry
                        debug_assert!(channel.putter.is_some() && channel.getter.is_none());
                        channel.getter = Some(new_port);
                    };

                    if !Self::channel_is_consistent(channel) {
                        self.solution.decision = RoundDecision::Failure;
                    }
                },
                None => {
                    // No entry yet. So add it
                    let new_solution = if entry.is_putter {
                        SolutionChannel{ putter: Some(new_port), getter: None }
                    } else {
                        SolutionChannel{ putter: None, getter: Some(new_port) }
                    };
                    self.solution.channel_mapping.push(new_solution);
                    had_new_entry = true;
                }
            }
        }

        if !had_new_entry {
            self.update_all_present();
            if self.all_present && self.solution.decision != RoundDecision::Failure {
                // No new entries and every component is present. This implies that
                // every component successfully added their local solutions to the
                // global solution. Hence: we have a global solution
                debug_assert_eq!(self.solution.decision, RoundDecision::None);
                dbg_code!(for entry in &self.solution.channel_mapping {
                    debug_assert!(entry.putter.is_some() && entry.getter.is_some());
                });
                self.solution.decision = RoundDecision::Solution;
            }
        }
    }

    fn mark_single_component_submission(&mut self, comp_id: CompId, will_contribute: bool) {
        debug_assert!(!will_contribute || !self.solution.submissions_by.iter().any(|(id, val)| *id == comp_id && *val)); // if submitting a solution, then we do not expect an existing entry
        for (entry, has_contributed) in self.solution.submissions_by.iter_mut() {
            if *entry == comp_id {
                *has_contributed = *has_contributed || will_contribute;
                return;
            }
        }

        self.solution.submissions_by.push((comp_id, will_contribute));
    }

    fn update_all_present(&mut self) {
        debug_assert!(!self.all_present); // upheld by caller
        for (_, present) in self.solution.submissions_by.iter() {
            if !*present {
                return;
            }
        }

        self.all_present = true;
    }

    /// Given the partial solution entry of a channel's port, check if there is
    /// an entry for the other port. If there is we return its index, and we
    /// return `None` otherwise.
    fn find_channel_index_for_partial_entry(&self, new_entry: &SyncSolutionPort) -> Option<usize> {
        fn might_belong_to_same_channel(cur_entry: &SyncSolutionPort, new_entry: &SyncSolutionPort) -> bool {
            (
                cur_entry.peer_comp_id == new_entry.self_comp_id &&
                cur_entry.peer_port_id == new_entry.self_port_id
            ) || (
                cur_entry.self_comp_id == new_entry.peer_comp_id &&
                cur_entry.self_port_id == new_entry.peer_port_id
            )
        }

        for (entry_index, cur_entry) in self.solution.channel_mapping.iter().enumerate() {
            if new_entry.port_kind == PortKind::Putter {
                if let Some(cur_entry) = &cur_entry.getter {
                    if might_belong_to_same_channel(cur_entry, new_entry) {
                        return Some(entry_index);
                    }
                }
            } else {
                if let Some(cur_entry) = &cur_entry.putter {
                    if might_belong_to_same_channel(cur_entry, new_entry) {
                        return Some(entry_index);
                    }
                }
            }
        }

        return None;
    }

    /// Given the local solution entry for one end of a channel, check if there
    /// is an entry for the other end of the channel such that they can be
    /// paired up.
    fn find_channel_index_for_local_entry(&self, comp_id: CompId, new_entry: &SyncLocalSolutionEntry) -> Option<usize> {
        fn might_belong_to_same_channel(cur_entry: &SyncSolutionPort, new_comp_id: CompId, new_entry: &SyncLocalSolutionEntry) -> bool {
            (
                new_entry.peer_comp_id == cur_entry.self_comp_id &&
                new_entry.peer_port_id == cur_entry.self_port_id
            ) || (
                new_comp_id == cur_entry.peer_comp_id &&
                new_entry.self_port_id == cur_entry.peer_port_id
            )
        }

        for (entry_index, cur_entry) in self.solution.channel_mapping.iter().enumerate() {
            // Note that the check that determines whether two ports belong to
            // the same channel is one-sided. That is: port A may decide that
            // port B is part of its channel, but port B may consider port A not
            // to be part of its channel. Before merging the entries (outside of
            // this function) we'll make sure this is not the case.
            if new_entry.is_putter {
                // Expect getter to be present
                if let Some(cur_entry) = &cur_entry.getter {
                    if might_belong_to_same_channel(cur_entry, comp_id, new_entry) {
                        return Some(entry_index);
                    }
                }
            } else {
                if let Some(cur_entry) = &cur_entry.putter {
                    if might_belong_to_same_channel(cur_entry, comp_id, new_entry) {
                        return Some(entry_index);
                    }
                }
            }
        }

        return None;
    }

    // Makes sure that two ports agree that they are each other's peers
    fn ports_belong_to_same_channel(a: &SyncSolutionPort, b: &SyncSolutionPort) -> bool {
        return
            a.self_comp_id == b.peer_comp_id && a.self_port_id == b.peer_port_id &&
            a.peer_comp_id == b.self_comp_id && a.peer_port_id == b.self_port_id
    }

    // Makes sure channel is consistently mapped (or not yet fully specified)
    fn channel_is_consistent(channel: &SyncSolutionChannel) -> bool {
        debug_assert!(channel.putter.is_some() || channel.getter.is_some());
        if channel.putter.is_none() || channel.getter.is_none() {
            // Not yet fully specified
            return false;
        }

        let putter = channel.putter.as_ref().unwrap();
        let getter = channel.getter.as_ref().unwrap();
        return
            Self::ports_belong_to_same_channel(putter, getter) &&
                putter.mapping == getter.mapping;
    }
}

/// Tracking consensus state
pub struct Consensus {
    // General state of consensus manager
    mapping_counter: u32,
    mode: Mode,
    // State associated with sync round
    round_index: u32,
    highest_id: CompId,
    ports: Vec<PortAnnotation>,
    // State associated with arriving at a solution and being a (temporary)
    // leader in the consensus round
    solution: SolutionCombiner,
}

impl Consensus {
    pub(crate) fn new() -> Self {
        return Self{
            round_index: 0,
            highest_id: CompId::new_invalid(),
            ports: Vec::new(),
            mapping_counter: 0,
            mode: Mode::NonSync,
            solution: SolutionCombiner::new(),
        }
    }

    // -------------------------------------------------------------------------
    // Managing sync state
    // -------------------------------------------------------------------------

    pub(crate) fn notify_sync_start(&mut self, comp_ctx: &CompCtx) {
        debug_assert_eq!(self.mode, Mode::NonSync);
        self.highest_id = comp_ctx.id;
        self.mapping_counter = 0;
        self.mode = Mode::SyncBusy;
        self.make_ports_consistent_with_ctx(comp_ctx);
    }

    pub(crate) fn notify_sync_end(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx) -> RoundDecision {
        debug_assert_eq!(self.mode, Mode::SyncBusy);
        self.mode = Mode::SyncAwaitingSolution;

        // Submit our port mapping as a solution
        let mut local_solution = Vec::with_capacity(self.ports.len());
        for port in &self.ports {
            if let Some(mapping) = port.mapping {
                let port_info = comp_ctx.get_port(port.id);
                local_solution.push(SyncLocalSolutionEntry {
                    self_port_id: port.id,
                    peer_comp_id: port_info.peer_comp_id,
                    peer_port_id: port_info.peer_id,
                    mapping,
                    port_kind: port_info.kind,
                });
            }
        }

        let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution);
        return decision;
    }

    fn make_ports_consistent_with_ctx(&mut self, comp_ctx: &CompCtx) {
        let mut needs_setting_ports = false;
        if comp_ctx.ports.len() != self.ports.len() {
            needs_setting_ports = true;
        } else {
            for idx in 0..comp_ctx.ports.len() {
                let comp_port_id = comp_ctx.ports[idx].self_id;
                let cons_port_id = self.ports[idx].id;
                if comp_port_id != cons_port_id {
                    needs_setting_ports = true;
                    break;
                }
            }
        }

        if needs_setting_ports {
            self.ports.clear();
            self.ports.reserve(comp_ctx.ports.len());
            for port in &comp_ctx.ports {
                self.ports.push(PortAnnotation::new(port.self_id))
            }
        }
    }

    // -------------------------------------------------------------------------
    // Handling inbound and outbound messages
    // -------------------------------------------------------------------------

    pub(crate) fn annotate_data_message(&mut self, comp_ctx: &CompCtx, port_info: &Port, content: ValueGroup) -> DataMessage {
        debug_assert_eq!(self.mode, Mode::SyncBusy); // can only send between sync start and sync end
        debug_assert!(self.round.ports.iter().any(|v| v.id == port_info.self_id));
        let data_header = self.create_data_header_and_update_mapping(port_info);
        let sync_header = self.create_sync_header(comp_ctx);

        return DataMessage{ data_header, sync_header, content };
    }

    /// Checks if the data message can be received (due to port annotations), if
    /// it can then `true` is returned and the caller is responsible for handing
    /// the message of to the PDL code. Otherwise the message cannot be
    /// received.
    pub(crate) fn try_receive_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: &DataMessage) -> bool {
        debug_assert_eq!(self.mode, Mode::SyncBusy);
        debug_assert!(self.round.ports.iter().any(|v| v.id == message.data_header.target_port));

        // Make sure the expected mapping matches the currently stored mapping
        for (expected_id, expected_annotation) in &message.data_header.expected_mapping {
            let got_annotation = self.get_annotation(*expected_id);
            if got_annotation != expected_annotation {
                return false;
            }
        }

        // Expected mapping matches current mapping, so we will receive the message
        self.set_annotation(message.data_header.target_port, message.data_header.new_mapping);

        // Handle the sync header embedded within the data message
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);

        return true;
    }

    /// Receives the sync message and updates the consensus state appropriately.
    pub(crate) fn receive_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) -> RoundDecision {
        // Whatever happens: handle the sync header (possibly changing the
        // currently registered leader)
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);

        match message.content {
            SyncMessageContent::NotificationOfLeader => {
                return RoundDecision::None;
            },
            SyncMessageContent::LocalSolution(solution_generator_id, local_solution) => {
                return self.handle_local_solution(sched_ctx, comp_ctx, solution_generator_id, local_solution);
            },
            SyncMessageContent::PartialSolution(partial_solution) => {
                return self.handle_partial_solution(sched_ctx, comp_ctx, partial_solution);
            }
            SyncMessageContent::GlobalSolution => {
                // Global solution has been found
                debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution); // leader can only find global- if we submitted local solution
                todo!("clear port mapping or something");
                return RoundDecision::Solution;
            },
        }
    }

    fn handle_sync_header(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, header: &MessageSyncHeader) {
        if header.highest_id > self.round.highest_id {
            // Sender knows of someone with a higher ID. So store highest ID,
            // notify all peers, and forward local solutions
            self.round.highest_id = header.highest_id;
            for peer in &comp_ctx.peers {
                if peer.id == header.sending_id {
                    continue;
                }

                let message = SyncMessage{
                    sync_header: self.create_sync_header(comp_ctx),
                    content: SyncMessageContent::NotificationOfLeader,
                };
                peer.handle.inbox.push(Message::Sync(message));
                wake_up_if_sleeping(sched_ctx, peer.id, &peer.handle);
            }

            self.forward_local_solutions(sched_ctx, comp_ctx);
        } else if header.highest_id < self.round.highest_id {
            // Sender has a lower ID, so notify it of our higher one
            let message = SyncMessage{
                sync_header: self.create_sync_header(comp_ctx),
                content: SyncMessageContent::NotificationOfLeader,
            };
            let peer_info = comp_ctx.get_peer(header.sending_id);
            peer_info.handle.inbox.push(Message::Sync(message));
            wake_up_if_sleeping(sched_ctx, peer_info.id, &peer_info.handle);
        } // else: exactly equal
    }

    fn get_annotation(&self, port_id: PortId) -> Option<u32> {
        for annotation in self.ports.iter() {
            if annotation.id == port_id {
                return annotation.mapping;
            }
        }

        debug_assert!(false);
        return None;
    }

    fn set_annotation(&mut self, port_id: PortId, mapping: u32) {
        for annotation in self.ports.iter_mut() {
            if annotation.id == port_id {
                annotation.mapping = Some(mapping);
            }
        }
    }

    // -------------------------------------------------------------------------
    // Leader-related methods
    // -------------------------------------------------------------------------

    fn forward_local_solutions(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
        todo!("implement")
    }

    fn handle_local_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, solution_sender_id: CompId, solution: SyncLocalSolution) -> RoundDecision {
        if self.highest_id == comp_ctx.id {
            // We are the leader
            self.solution.combine_with_local_solution(solution_sender_id, solution);
            let round_decision = self.solution.get_decision();
            let decision_is_solution = match round_decision {
                RoundDecision::None => {
                    // No solution yet
                    return RoundDecision::None;
                },
                RoundDecision::Solution => true,
                RoundDecision::Failure => false,
            };

            // If here then we've reached a decision, broadcast it
            for (peer_id, _is_present) in self.solution.solution.submissions_by.iter().copied() {
                debug_assert!(_is_present);
                if peer_id == comp_ctx.id {
                    // Do not send the result to ourselves
                    continue;
                }

                let mut handle = sched_ctx.runtime.get_component_public(peer_id);
                handle.inbox.push(Message::Sync(SyncMessage{
                    sync_header: self.create_sync_header(comp_ctx),
                    content: if decision_is_solution {
                        SyncMessageContent::GlobalSolution
                    } else {
                        SyncMessageContent::GlobalFailure
                    },
                }));
                wake_up_if_sleeping(sched_ctx, peer_id, &handle);

                let _should_remove = handle.decrement_users();
                debug_assert!(!_should_remove);
            }

            return round_decision;
        } else {
            // Forward the solution
            let message = SyncMessage{
                sync_header: self.create_sync_header(comp_ctx),
                content: SyncMessageContent::LocalSolution(solution_sender_id, solution),
            };
            self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
            return RoundDecision::None;
        }
    }

    fn handle_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, solution: SyncPartialSolution) -> RoundDecision {
        if self.highest_id == comp_ctx.id {
            // We are the leader, combine existing and new solution
            self.solution.combine_with_partial_solution(solution);
            let round_decision = self.solution.get_decision();


            return RoundDecision::None;
        } else {
            // Forward the partial solution
            let message = SyncMessage{
                sync_header: self.create_sync_header(comp_ctx),
                content: SyncMessageContent::PartialSolution(solution),
            };
            self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
            return RoundDecision::None;
        }
    }

    fn send_to_leader(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, message: Message) {
        debug_assert_ne!(self.highest_id, comp_ctx.id); // we're not the leader
        let leader_info = sched_ctx.runtime.get_component_public(self.highest_id);
        leader_info.inbox.push(message);
        wake_up_if_sleeping(sched_ctx, self.highest_id, &leader_info);
    }

    // -------------------------------------------------------------------------
    // Creating message headers
    // -------------------------------------------------------------------------

    fn create_data_header_and_update_mapping(&mut self, port_info: &Port) -> MessageDataHeader {
        let mut expected_mapping = Vec::with_capacity(self.ports.len());
        let mut port_index = usize::MAX;
        for (index, port) in self.round.ports.iter().enumerate() {
            if port.id == port_info.self_id {
                port_index = index;
            }
            expected_mapping.push((port.id, Some(mapping)));
        }

        let new_mapping = self.take_mapping();
        self.round.ports[port_index].mapping = Some(new_mapping);
        debug_assert_eq!(port_info.kind, PortKind::Putter);
        return MessageDataHeader{
            expected_mapping,
            new_mapping,
            source_port: port_info.self_id,
            target_port: port_info.peer_id,
        };
    }

    fn create_sync_header(&self, comp_ctx: &CompCtx) -> MessageSyncHeader {
        return MessageSyncHeader{
            sync_round: self.round.index,
            sending_id: comp_ctx.id,
            highest_id: self.highest_id,
        };
    }

    fn take_mapping(&mut self) -> u32 {
        let mapping = self.mapping_counter;
        self.mapping_counter = self.mapping_counter.wrapping_add(1);
        return mapping;
    }
}