Files
@ d76b1fe2648f
Branch filter:
Location: CSY/reowolf/src/runtime/mod.rs
d76b1fe2648f
25.4 KiB
application/rls-services+xml
mild cleanup and major fleshing out of doc comments
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 | /// cbindgen:ignore
mod communication;
/// cbindgen:ignore
mod endpoints;
pub mod error;
/// cbindgen:ignore
mod logging;
/// cbindgen:ignore
mod setup;
#[cfg(test)]
mod tests;
use crate::common::*;
use error::*;
use mio::net::UdpSocket;
/// Each Connector structure is the interface between the user's application and a communication session,
/// in which the application plays the part of a (native) component. This structure provides the application
/// with functionality available to all components: the ability to add new channels (port pairs), and to
/// instantiate new components whose definitions are defined in the connector's configured protocol
/// description. Native components have the additional ability to add `dangling' ports backed by local/remote
/// IP addresses, to be coupled with a counterpart once the connector's setup is completed by `connect`.
/// This allows sets of applications to cooperate in constructing shared sessions that span the network.
#[derive(Debug)]
pub struct Connector {
unphased: ConnectorUnphased,
phased: ConnectorPhased,
}
/// Characterizes a type which can write lines of logging text.
/// The implementations provided in the `logging` module are likely to be sufficient,
/// but for added flexibility, users are able to implement their own loggers for use
/// by connectors.
pub trait Logger: Debug + Send + Sync {
fn line_writer(&mut self) -> Option<&mut dyn std::io::Write>;
}
/// A logger that appends the logged strings to a growing byte buffer
#[derive(Debug)]
pub struct VecLogger(ConnectorId, Vec<u8>);
/// A trivial logger that always returns None, such that no logging information is ever written.
#[derive(Debug)]
pub struct DummyLogger;
/// A logger that writes the logged lines to a given file.
#[derive(Debug)]
pub struct FileLogger(ConnectorId, std::fs::File);
#[derive(Debug, Clone)]
struct CurrentState {
port_info: HashMap<PortId, PortInfo>,
id_manager: IdManager,
}
pub(crate) struct NonsyncProtoContext<'a> {
current_state: &'a mut CurrentState,
logger: &'a mut dyn Logger,
// cu_inner: &'a mut ConnectorUnphasedInner, // persists between rounds
unrun_components: &'a mut Vec<(ComponentId, ComponentState)>, // lives for Nonsync phase
proto_component_id: ComponentId, // KEY in id->component map
}
pub(crate) struct SyncProtoContext<'a> {
rctx: &'a RoundCtx,
branch_inner: &'a mut ProtoComponentBranchInner, // sub-structure of component branch
predicate: &'a Predicate, // KEY in pred->branch map
}
#[derive(Default, Debug, Clone)]
struct ProtoComponentBranchInner {
untaken_choice: Option<u16>,
did_put_or_get: HashSet<PortId>,
inbox: HashMap<PortId, Payload>,
}
#[derive(
Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
)]
struct SpecVar(PortId);
#[derive(
Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
)]
struct SpecVal(u16);
#[derive(Debug)]
struct RoundOk {
batch_index: usize,
gotten: HashMap<PortId, Payload>,
}
#[derive(Default)]
struct VecSet<T: std::cmp::Ord> {
// invariant: ordered, deduplicated
vec: Vec<T>,
}
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
enum Route {
LocalComponent,
NetEndpoint { index: usize },
UdpEndpoint { index: usize },
}
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
enum SubtreeId {
LocalComponent(ComponentId),
NetEndpoint { index: usize },
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct MyPortInfo {
polarity: Polarity,
port: PortId,
owner: ComponentId,
}
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
enum Decision {
Failure,
Success(Predicate),
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
enum Msg {
SetupMsg(SetupMsg),
CommMsg(CommMsg),
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
enum SetupMsg {
MyPortInfo(MyPortInfo),
LeaderWave { wave_leader: ConnectorId },
LeaderAnnounce { tree_leader: ConnectorId },
YouAreMyParent,
SessionGather { unoptimized_map: HashMap<ConnectorId, SessionInfo> },
SessionScatter { optimized_map: HashMap<ConnectorId, SessionInfo> },
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct SessionInfo {
serde_proto_description: SerdeProtocolDescription,
port_info: HashMap<PortId, PortInfo>,
endpoint_incoming_to_getter: Vec<PortId>,
proto_components: HashMap<ComponentId, ComponentState>,
}
#[derive(Debug, Clone)]
struct SerdeProtocolDescription(Arc<ProtocolDescription>);
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct CommMsg {
round_index: usize,
contents: CommMsgContents,
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
enum CommMsgContents {
SendPayload(SendPayloadMsg),
CommCtrl(CommCtrlMsg),
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
enum CommCtrlMsg {
Suggest { suggestion: Decision }, // SINKWARD
Announce { decision: Decision }, // SINKAWAYS
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct SendPayloadMsg {
predicate: Predicate,
payload: Payload,
}
#[derive(Debug, PartialEq)]
enum AssignmentUnionResult {
FormerNotLatter,
LatterNotFormer,
Equivalent,
New(Predicate),
Nonexistant,
}
struct NetEndpoint {
inbox: Vec<u8>,
stream: TcpStream,
}
#[derive(Debug, Clone)]
struct NetEndpointSetup {
getter_for_incoming: PortId,
sock_addr: SocketAddr,
endpoint_polarity: EndpointPolarity,
}
#[derive(Debug, Clone)]
struct UdpEndpointSetup {
getter_for_incoming: PortId,
local_addr: SocketAddr,
peer_addr: SocketAddr,
}
#[derive(Debug)]
struct NetEndpointExt {
net_endpoint: NetEndpoint,
getter_for_incoming: PortId,
}
#[derive(Debug)]
struct UdpEndpointExt {
sock: UdpSocket, // already bound and connected
received_this_round: bool,
outgoing_payloads: HashMap<Predicate, Payload>,
getter_for_incoming: PortId,
}
#[derive(Debug)]
struct Neighborhood {
parent: Option<usize>,
children: VecSet<usize>,
}
#[derive(Debug, Clone)]
struct IdManager {
connector_id: ConnectorId,
port_suffix_stream: U32Stream,
component_suffix_stream: U32Stream,
}
struct UdpInBuffer {
byte_vec: Vec<u8>,
}
#[derive(Debug)]
struct SpecVarStream {
connector_id: ConnectorId,
port_suffix_stream: U32Stream,
}
#[derive(Debug)]
struct EndpointManager {
// invariants:
// 1. net and udp endpoints are registered with poll. Poll token computed with TargetToken::into
// 2. Events is empty
poll: Poll,
events: Events,
delayed_messages: Vec<(usize, Msg)>,
undelayed_messages: Vec<(usize, Msg)>,
net_endpoint_store: EndpointStore<NetEndpointExt>,
udp_endpoint_store: EndpointStore<UdpEndpointExt>,
udp_in_buffer: UdpInBuffer,
}
#[derive(Debug)]
struct EndpointStore<T> {
endpoint_exts: Vec<T>,
polled_undrained: VecSet<usize>,
}
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
struct PortInfo {
owner: ComponentId,
peer: Option<PortId>,
polarity: Polarity,
route: Route,
}
#[derive(Debug)]
struct ConnectorCommunication {
round_index: usize,
endpoint_manager: EndpointManager,
neighborhood: Neighborhood,
native_batches: Vec<NativeBatch>,
round_result: Result<Option<RoundOk>, SyncError>,
}
#[derive(Debug)]
struct ConnectorUnphased {
proto_description: Arc<ProtocolDescription>,
proto_components: HashMap<ComponentId, ComponentState>,
inner: ConnectorUnphasedInner,
}
#[derive(Debug)]
struct ConnectorUnphasedInner {
logger: Box<dyn Logger>,
current_state: CurrentState,
native_component_id: ComponentId,
}
#[derive(Debug)]
struct ConnectorSetup {
net_endpoint_setups: Vec<NetEndpointSetup>,
udp_endpoint_setups: Vec<UdpEndpointSetup>,
}
#[derive(Debug)]
enum ConnectorPhased {
Setup(Box<ConnectorSetup>),
Communication(Box<ConnectorCommunication>),
}
#[derive(Default, Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
struct Predicate {
assigned: BTreeMap<SpecVar, SpecVal>,
}
#[derive(Debug)]
struct SolutionStorage {
old_local: HashSet<Predicate>,
new_local: HashSet<Predicate>,
// this pair acts as SubtreeId -> HashSet<Predicate> which is friendlier to iteration
subtree_solutions: Vec<HashSet<Predicate>>,
subtree_id_to_index: HashMap<SubtreeId, usize>,
}
struct RoundCtx {
solution_storage: SolutionStorage,
spec_var_stream: SpecVarStream,
payload_inbox: Vec<(PortId, SendPayloadMsg)>,
deadline: Option<Instant>,
current_state: CurrentState,
}
trait CuUndecided {
fn logger(&mut self) -> &mut dyn Logger;
fn proto_description(&self) -> &ProtocolDescription;
fn native_component_id(&self) -> ComponentId;
fn logger_and_protocol_description(&mut self) -> (&mut dyn Logger, &ProtocolDescription);
}
#[derive(Debug, Default)]
struct NativeBatch {
// invariant: putters' and getters' polarities respected
to_put: HashMap<PortId, Payload>,
to_get: HashSet<PortId>,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
enum TokenTarget {
NetEndpoint { index: usize },
UdpEndpoint { index: usize },
Waker,
}
enum CommRecvOk {
TimeoutWithoutNew,
NewPayloadMsgs,
NewControlMsg { net_index: usize, msg: CommCtrlMsg },
}
////////////////
fn would_block(err: &std::io::Error) -> bool {
err.kind() == std::io::ErrorKind::WouldBlock
}
impl TokenTarget {
const HALFWAY_INDEX: usize = usize::MAX / 2;
const MAX_INDEX: usize = usize::MAX;
const WAKER_TOKEN: usize = Self::MAX_INDEX;
}
impl From<Token> for TokenTarget {
fn from(Token(index): Token) -> Self {
if index == Self::WAKER_TOKEN {
TokenTarget::Waker
} else if let Some(shifted) = index.checked_sub(Self::HALFWAY_INDEX) {
TokenTarget::UdpEndpoint { index: shifted }
} else {
TokenTarget::NetEndpoint { index }
}
}
}
impl Into<Token> for TokenTarget {
fn into(self) -> Token {
match self {
TokenTarget::Waker => Token(Self::WAKER_TOKEN),
TokenTarget::UdpEndpoint { index } => Token(index + Self::HALFWAY_INDEX),
TokenTarget::NetEndpoint { index } => Token(index),
}
}
}
impl<T: std::cmp::Ord> VecSet<T> {
fn new(mut vec: Vec<T>) -> Self {
vec.sort();
vec.dedup();
Self { vec }
}
fn contains(&self, element: &T) -> bool {
self.vec.binary_search(element).is_ok()
}
fn insert(&mut self, element: T) -> bool {
match self.vec.binary_search(&element) {
Ok(_) => false,
Err(index) => {
self.vec.insert(index, element);
true
}
}
}
fn iter(&self) -> std::slice::Iter<T> {
self.vec.iter()
}
fn pop(&mut self) -> Option<T> {
self.vec.pop()
}
}
impl CurrentState {
fn spec_var_for(&self, port: PortId) -> SpecVar {
let info = self.port_info.get(&port).unwrap();
SpecVar(match info.polarity {
Getter => port,
Putter => info.peer.unwrap(),
})
}
}
impl SpecVarStream {
fn next(&mut self) -> SpecVar {
let phantom_port: PortId =
Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }
.into();
SpecVar(phantom_port)
}
}
impl IdManager {
fn new(connector_id: ConnectorId) -> Self {
Self {
connector_id,
port_suffix_stream: Default::default(),
component_suffix_stream: Default::default(),
}
}
fn new_spec_var_stream(&self) -> SpecVarStream {
// Spec var stream starts where the current port_id stream ends, with gap of SKIP_N.
// This gap is entirely unnecessary (i.e. 0 is fine)
// It's purpose is only to make SpecVars easier to spot in logs.
// E.g. spot the spec var: { v0_0, v1_2, v1_103 }
const SKIP_N: u32 = 100;
let port_suffix_stream = self.port_suffix_stream.clone().n_skipped(SKIP_N);
SpecVarStream { connector_id: self.connector_id, port_suffix_stream }
}
fn new_port_id(&mut self) -> PortId {
Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }.into()
}
fn new_component_id(&mut self) -> ComponentId {
Id { connector_id: self.connector_id, u32_suffix: self.component_suffix_stream.next() }
.into()
}
}
impl Drop for Connector {
fn drop(&mut self) {
log!(&mut *self.unphased.inner.logger, "Connector dropping. Goodbye!");
}
}
fn duplicate_port(slice: &[PortId]) -> Option<PortId> {
let mut vec = Vec::with_capacity(slice.len());
for port in slice.iter() {
match vec.binary_search(port) {
Err(index) => vec.insert(index, *port),
Ok(_) => return Some(*port),
}
}
None
}
impl Connector {
/// Generate a random connector identifier from the system's source of randomness.
pub fn random_id() -> ConnectorId {
type Bytes8 = [u8; std::mem::size_of::<ConnectorId>()];
unsafe {
let mut bytes = std::mem::MaybeUninit::<Bytes8>::uninit();
// getrandom is the canonical crate for a small, secure rng
getrandom::getrandom(&mut *bytes.as_mut_ptr()).unwrap();
// safe! representations of all valid Byte8 values are valid ConnectorId values
std::mem::transmute::<_, _>(bytes.assume_init())
}
}
/// Returns true iff the connector is in connected state, i.e., it's setup phase is complete,
/// and it is ready to participate in synchronous rounds of communication.
pub fn is_connected(&self) -> bool {
// If designed for Rust usage, connectors would be exposed as an enum type from the start.
// consequently, this "phased" business would also include connector variants and this would
// get a lot closer to the connector impl. itself.
// Instead, the C-oriented implementation doesn't distinguish connector states as types,
// and distinguish them as enum variants instead
match self.phased {
ConnectorPhased::Setup(..) => false,
ConnectorPhased::Communication(..) => true,
}
}
/// Enables the connector's current logger to be swapped out for another
pub fn swap_logger(&mut self, mut new_logger: Box<dyn Logger>) -> Box<dyn Logger> {
std::mem::swap(&mut self.unphased.inner.logger, &mut new_logger);
new_logger
}
/// Access the connector's current logger
pub fn get_logger(&mut self) -> &mut dyn Logger {
&mut *self.unphased.inner.logger
}
/// Create a new synchronous channel, returning its ends as a pair of ports,
/// with polarity output, input respectively. Available during either setup/communication phase.
/// # Panics
/// This function panics if the connector's (large) port id space is exhausted.
pub fn new_port_pair(&mut self) -> [PortId; 2] {
let cu = &mut self.unphased;
// adds two new associated ports, related to each other, and exposed to the native
let mut new_cid = || cu.inner.current_state.id_manager.new_port_id();
let [o, i] = [new_cid(), new_cid()];
cu.inner.current_state.port_info.insert(
o,
PortInfo {
route: Route::LocalComponent,
peer: Some(i),
owner: cu.inner.native_component_id,
polarity: Putter,
},
);
cu.inner.current_state.port_info.insert(
i,
PortInfo {
route: Route::LocalComponent,
peer: Some(o),
owner: cu.inner.native_component_id,
polarity: Getter,
},
);
log!(cu.inner.logger, "Added port pair (out->in) {:?} -> {:?}", o, i);
[o, i]
}
/// Instantiates a new component for the connector runtime to manage, and passing
/// the given set of ports from the interface of the native component, to that of the
/// newly created component (passing their ownership).
/// # Errors
/// Error is returned if the moved ports are not owned by the native component,
/// if the given component name is not defined in the connector's protocol,
/// the given sequence of ports contains a duplicate port,
/// or if the component is unfit for instantiation with the given port sequence.
/// # Panics
/// This function panics if the connector's (large) component id space is exhausted.
pub fn add_component(
&mut self,
identifier: &[u8],
ports: &[PortId],
) -> Result<(), AddComponentError> {
// called by the USER. moves ports owned by the NATIVE
use AddComponentError as Ace;
// 1. check if this is OK
if let Some(port) = duplicate_port(ports) {
return Err(Ace::DuplicatePort(port));
}
let cu = &mut self.unphased;
let expected_polarities = cu.proto_description.component_polarities(identifier)?;
if expected_polarities.len() != ports.len() {
return Err(Ace::WrongNumberOfParamaters { expected: expected_polarities.len() });
}
for (&expected_polarity, &port) in expected_polarities.iter().zip(ports.iter()) {
let info = cu.inner.current_state.port_info.get(&port).ok_or(Ace::UnknownPort(port))?;
if info.owner != cu.inner.native_component_id {
return Err(Ace::UnknownPort(port));
}
if info.polarity != expected_polarity {
return Err(Ace::WrongPortPolarity { port, expected_polarity });
}
}
// 2. add new component
let new_cid = cu.inner.current_state.id_manager.new_component_id();
cu.proto_components
.insert(new_cid, cu.proto_description.new_main_component(identifier, ports));
// 3. update port ownership
for port in ports.iter() {
match cu.inner.current_state.port_info.get_mut(port) {
Some(port_info) => port_info.owner = new_cid,
None => unreachable!(),
}
}
Ok(())
}
}
impl Predicate {
#[inline]
pub fn singleton(k: SpecVar, v: SpecVal) -> Self {
Self::default().inserted(k, v)
}
#[inline]
pub fn inserted(mut self, k: SpecVar, v: SpecVal) -> Self {
self.assigned.insert(k, v);
self
}
pub fn assigns_subset(&self, maybe_superset: &Self) -> bool {
for (var, val) in self.assigned.iter() {
match maybe_superset.assigned.get(var) {
Some(val2) if val2 == val => {}
_ => return false, // var unmapped, or mapped differently
}
}
true
}
// returns true IFF self.unify would return Equivalent OR FormerNotLatter
// pub fn consistent_with(&self, other: &Self) -> bool {
// let [larger, smaller] =
// if self.assigned.len() > other.assigned.len() { [self, other] } else { [other, self] };
// for (var, val) in smaller.assigned.iter() {
// match larger.assigned.get(var) {
// Some(val2) if val2 != val => return false,
// _ => {}
// }
// }
// true
// }
/// Given self and other, two predicates, return the predicate whose
/// assignments are the union of those of self and other.
fn assignment_union(&self, other: &Self) -> AssignmentUnionResult {
use AssignmentUnionResult as Aur;
// iterators over assignments of both predicates. Rely on SORTED ordering of BTreeMap's keys.
let [mut s_it, mut o_it] = [self.assigned.iter(), other.assigned.iter()];
let [mut s, mut o] = [s_it.next(), o_it.next()];
// lists of assignments in self but not other and vice versa.
let [mut s_not_o, mut o_not_s] = [vec![], vec![]];
loop {
match [s, o] {
[None, None] => break,
[None, Some(x)] => {
o_not_s.push(x);
o_not_s.extend(o_it);
break;
}
[Some(x), None] => {
s_not_o.push(x);
s_not_o.extend(s_it);
break;
}
[Some((sid, sb)), Some((oid, ob))] => {
if sid < oid {
// o is missing this element
s_not_o.push((sid, sb));
s = s_it.next();
} else if sid > oid {
// s is missing this element
o_not_s.push((oid, ob));
o = o_it.next();
} else if sb != ob {
assert_eq!(sid, oid);
// both predicates assign the variable but differ on the value
return Aur::Nonexistant;
} else {
// both predicates assign the variable to the same value
s = s_it.next();
o = o_it.next();
}
}
}
}
// Observed zero inconsistencies. A unified predicate exists...
match [s_not_o.is_empty(), o_not_s.is_empty()] {
[true, true] => Aur::Equivalent, // ... equivalent to both.
[false, true] => Aur::FormerNotLatter, // ... equivalent to self.
[true, false] => Aur::LatterNotFormer, // ... equivalent to other.
[false, false] => {
// ... which is the union of the predicates' assignments but
// is equivalent to neither self nor other.
let mut new = self.clone();
for (&id, &b) in o_not_s {
new.assigned.insert(id, b);
}
Aur::New(new)
}
}
}
pub(crate) fn union_with(&self, other: &Self) -> Option<Self> {
let mut res = self.clone();
for (&channel_id, &assignment_1) in other.assigned.iter() {
match res.assigned.insert(channel_id, assignment_1) {
Some(assignment_2) if assignment_1 != assignment_2 => return None,
_ => {}
}
}
Some(res)
}
pub(crate) fn query(&self, var: SpecVar) -> Option<SpecVal> {
self.assigned.get(&var).copied()
}
}
impl<T: Debug + std::cmp::Ord> Debug for VecSet<T> {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
f.debug_set().entries(self.vec.iter()).finish()
}
}
impl Debug for Predicate {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
struct Assignment<'a>((&'a SpecVar, &'a SpecVal));
impl Debug for Assignment<'_> {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
write!(f, "{:?}={:?}", (self.0).0, (self.0).1)
}
}
f.debug_set().entries(self.assigned.iter().map(Assignment)).finish()
}
}
impl serde::Serialize for SerdeProtocolDescription {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
let inner: &ProtocolDescription = &self.0;
inner.serialize(serializer)
}
}
impl<'de> serde::Deserialize<'de> for SerdeProtocolDescription {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let inner: ProtocolDescription = ProtocolDescription::deserialize(deserializer)?;
Ok(Self(Arc::new(inner)))
}
}
impl IdParts for SpecVar {
fn id_parts(self) -> (ConnectorId, U32Suffix) {
self.0.id_parts()
}
}
impl Debug for SpecVar {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
let (a, b) = self.id_parts();
write!(f, "v{}_{}", a, b)
}
}
impl SpecVal {
const FIRING: Self = SpecVal(1);
const SILENT: Self = SpecVal(0);
fn is_firing(self) -> bool {
self == Self::FIRING
// all else treated as SILENT
}
fn iter_domain() -> impl Iterator<Item = Self> {
(0..).map(SpecVal)
}
}
impl Debug for SpecVal {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl Default for UdpInBuffer {
fn default() -> Self {
let mut byte_vec = Vec::with_capacity(Self::CAPACITY);
unsafe {
// safe! this vector is guaranteed to have sufficient capacity
byte_vec.set_len(Self::CAPACITY);
}
Self { byte_vec }
}
}
impl UdpInBuffer {
const CAPACITY: usize = u16::MAX as usize;
fn as_mut_slice(&mut self) -> &mut [u8] {
self.byte_vec.as_mut_slice()
}
}
impl Debug for UdpInBuffer {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
write!(f, "UdpInBuffer")
}
}
impl RoundCtx {
fn getter_pop(&mut self) -> Option<(PortId, SendPayloadMsg)> {
self.payload_inbox.pop()
}
fn getter_push(&mut self, getter: PortId, msg: SendPayloadMsg) {
self.payload_inbox.push((getter, msg));
}
fn putter_push(&mut self, cu: &mut impl CuUndecided, putter: PortId, msg: SendPayloadMsg) {
if let Some(getter) = self.current_state.port_info.get(&putter).unwrap().peer {
log!(cu.logger(), "Putter add (putter:{:?} => getter:{:?})", putter, getter);
self.getter_push(getter, msg);
} else {
log!(cu.logger(), "Putter {:?} has no known peer!", putter);
panic!("Putter {:?} has no known peer!");
}
}
}
|