Files
@ e3cd0bb27952
Branch filter:
Location: CSY/reowolf/src/protocol/mod.rs
e3cd0bb27952
11.9 KiB
application/rls-services+xml
Add stdlib dir option to bin-compiler args
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | mod arena;
pub(crate) mod eval;
pub(crate) mod input_source;
mod parser;
#[cfg(test)] mod tests;
pub(crate) mod ast;
pub(crate) mod ast_writer;
mod token_writer;
use std::sync::Mutex;
use crate::collections::{StringPool, StringRef};
pub use crate::protocol::ast::*;
use crate::protocol::eval::*;
use crate::protocol::input_source::*;
use crate::protocol::parser::*;
use crate::protocol::type_table::*;
pub use parser::type_table::TypeId;
/// A protocol description module
pub struct Module {
pub(crate) source: InputSource,
pub(crate) root_id: RootId,
pub(crate) name: Option<StringRef<'static>>,
}
/// Description of a protocol object, used to configure new connectors.
#[repr(C)]
pub struct ProtocolDescription {
pub(crate) modules: Vec<Module>,
pub(crate) heap: Heap,
pub(crate) types: TypeTable,
pub(crate) pool: Mutex<StringPool>,
}
#[derive(Debug, Clone)]
pub(crate) struct ComponentState {
pub(crate) prompt: Prompt,
}
#[derive(Debug)]
pub enum ComponentCreationError {
ModuleDoesntExist,
DefinitionDoesntExist,
DefinitionNotComponent,
InvalidNumArguments,
InvalidArgumentType(usize),
UnownedPort,
InSync,
}
impl ProtocolDescription {
pub fn parse(buffer: &[u8]) -> Result<Self, String> {
let source = InputSource::new(String::new(), Vec::from(buffer));
let mut parser = Parser::new(None)?;
parser.feed(source).expect("failed to feed source");
if let Err(err) = parser.parse() {
println!("ERROR:\n{}", err);
return Err(format!("{}", err))
}
let modules: Vec<Module> = parser.modules.into_iter()
.map(|module| Module{
source: module.source,
root_id: module.root_id,
name: module.name.map(|(_, name)| name)
})
.collect();
return Ok(ProtocolDescription {
modules,
heap: parser.heap,
types: parser.type_table,
pool: Mutex::new(parser.string_pool),
});
}
pub(crate) fn new_component(
&self, module_name: &[u8], identifier: &[u8], arguments: ValueGroup
) -> Result<Prompt, ComponentCreationError> {
// Find the module in which the definition can be found
let module_root = self.lookup_module_root(module_name);
if module_root.is_none() {
return Err(ComponentCreationError::ModuleDoesntExist);
}
let module_root = module_root.unwrap();
let root = &self.heap[module_root];
let definition_id = root.get_definition_by_ident(&self.heap, identifier);
if definition_id.is_none() {
return Err(ComponentCreationError::DefinitionDoesntExist);
}
let definition_id = definition_id.unwrap();
let ast_definition = &self.heap[definition_id];
if !ast_definition.is_procedure() {
return Err(ComponentCreationError::DefinitionNotComponent);
}
// Make sure that the types of the provided value group matches that of
// the expected types.
let ast_definition = ast_definition.as_procedure();
if !ast_definition.poly_vars.is_empty() || ast_definition.kind == ProcedureKind::Function {
return Err(ComponentCreationError::DefinitionNotComponent);
}
// - check number of arguments by retrieving the one instantiated
// monomorph
let concrete_type = ConcreteType{ parts: vec![ConcreteTypePart::Component(ast_definition.this, 0)] };
let procedure_type_id = self.types.get_monomorph_type_id(&definition_id, &concrete_type.parts).unwrap();
let procedure_monomorph_index = self.types.get_monomorph(procedure_type_id).variant.as_procedure().monomorph_index;
let monomorph_info = &ast_definition.monomorphs[procedure_monomorph_index as usize];
if monomorph_info.argument_types.len() != arguments.values.len() {
return Err(ComponentCreationError::InvalidNumArguments);
}
// - for each argument try to make sure the types match
for arg_idx in 0..arguments.values.len() {
let expected_type_id = monomorph_info.argument_types[arg_idx];
let expected_type = &self.types.get_monomorph(expected_type_id).concrete_type;
let provided_value = &arguments.values[arg_idx];
if !self.verify_same_type(expected_type, 0, &arguments, provided_value) {
return Err(ComponentCreationError::InvalidArgumentType(arg_idx));
}
}
// By now we're sure that all of the arguments are correct. So create
// the connector.
return Ok(Prompt::new(&self.types, &self.heap, ast_definition.this, procedure_type_id, arguments));
}
/// A somewhat temporary method. Can be used by components to lookup type
/// definitions by their name (to have their implementation somewhat
/// resistant to changes in the standard library)
pub(crate) fn find_type<'a>(&'a self, module_name: &[u8], type_name: &[u8]) -> Option<TypeInspector<'a>> {
// Lookup type definition in module
let root_id = self.lookup_module_root(module_name)?;
let module = &self.heap[root_id];
let definition_id = module.get_definition_by_ident(&self.heap, type_name)?;
let definition = &self.heap[definition_id];
// Make sure type is not polymorphic and is not a procedure
if !definition.poly_vars().is_empty() {
return None;
}
if definition.is_procedure() {
return None;
}
// Lookup type in type table
let type_parts = [ConcreteTypePart::Instance(definition_id, 0)];
let type_id = self.types.get_monomorph_type_id(&definition_id, &type_parts)
.expect("type ID for non-polymorphic type");
let type_monomorph = self.types.get_monomorph(type_id);
return Some(TypeInspector{
heap: definition,
type_table: type_monomorph
});
}
fn lookup_module_root(&self, module_name: &[u8]) -> Option<RootId> {
for module in self.modules.iter() {
match &module.name {
Some(name) => if name.as_bytes() == module_name {
return Some(module.root_id);
},
None => if module_name.is_empty() {
return Some(module.root_id);
}
}
}
return None;
}
fn verify_same_type(&self, expected: &ConcreteType, expected_idx: usize, arguments: &ValueGroup, argument: &Value) -> bool {
use ConcreteTypePart as CTP;
match &expected.parts[expected_idx] {
CTP::Void | CTP::Message | CTP::Slice | CTP::Pointer | CTP::Function(_, _) | CTP::Component(_, _) => unreachable!(),
CTP::Bool => if let Value::Bool(_) = argument { true } else { false },
CTP::UInt8 => if let Value::UInt8(_) = argument { true } else { false },
CTP::UInt16 => if let Value::UInt16(_) = argument { true } else { false },
CTP::UInt32 => if let Value::UInt32(_) = argument { true } else { false },
CTP::UInt64 => if let Value::UInt64(_) = argument { true } else { false },
CTP::SInt8 => if let Value::SInt8(_) = argument { true } else { false },
CTP::SInt16 => if let Value::SInt16(_) = argument { true } else { false },
CTP::SInt32 => if let Value::SInt32(_) = argument { true } else { false },
CTP::SInt64 => if let Value::SInt64(_) = argument { true } else { false },
CTP::Character => if let Value::Char(_) = argument { true } else { false },
CTP::String => {
// Match outer string type and embedded character types
if let Value::String(heap_pos) = argument {
for element in &arguments.regions[*heap_pos as usize] {
if let Value::Char(_) = element {} else {
return false;
}
}
} else {
return false;
}
return true;
},
CTP::Array => {
if let Value::Array(heap_pos) = argument {
let heap_pos = *heap_pos;
for element in &arguments.regions[heap_pos as usize] {
if !self.verify_same_type(expected, expected_idx + 1, arguments, element) {
return false;
}
}
return true;
} else {
return false;
}
},
CTP::Input => if let Value::Input(_) = argument { true } else { false },
CTP::Output => if let Value::Output(_) = argument { true } else { false },
CTP::Tuple(_) => todo!("implement full type checking on user-supplied arguments"),
CTP::Instance(definition_id, _num_embedded) => {
let definition = self.types.get_base_definition(definition_id).unwrap();
match &definition.definition {
DefinedTypeVariant::Enum(definition) => {
if let Value::Enum(variant_value) = argument {
let is_valid = definition.variants.iter()
.any(|v| v.value == *variant_value);
return is_valid;
}
},
_ => todo!("implement full type checking on user-supplied arguments"),
}
return false;
},
}
}
}
pub trait RunContext {
fn performed_put(&mut self, port: PortId) -> bool;
fn performed_get(&mut self, port: PortId) -> Option<ValueGroup>; // None if still waiting on message
fn fires(&mut self, port: PortId) -> Option<Value>; // None if not yet branched
fn performed_fork(&mut self) -> Option<bool>; // None if not yet forked
fn created_channel(&mut self) -> Option<(Value, Value)>; // None if not yet prepared
fn performed_select_wait(&mut self) -> Option<u32>; // None if not yet notified runtime of select blocker
}
pub struct ProtocolDescriptionBuilder {
parser: Parser,
}
impl ProtocolDescriptionBuilder {
pub fn new(std_lib_dir: Option<String>) -> Result<Self, String> {
let mut parser = Parser::new(std_lib_dir)?;
return Ok(Self{ parser })
}
pub fn add(&mut self, filename: String, buffer: Vec<u8>) -> Result<(), ParseError> {
let input = InputSource::new(filename, buffer);
self.parser.feed(input)?;
return Ok(())
}
pub fn compile(mut self) -> Result<ProtocolDescription, ParseError> {
self.parser.parse()?;
let modules: Vec<Module> = self.parser.modules.into_iter()
.map(|module| Module{
source: module.source,
root_id: module.root_id,
name: module.name.map(|(_, name)| name)
})
.collect();
return Ok(ProtocolDescription {
modules,
heap: self.parser.heap,
types: self.parser.type_table,
pool: Mutex::new(self.parser.string_pool),
});
}
}
pub struct TypeInspector<'a> {
heap: &'a Definition,
type_table: &'a MonoType,
}
impl<'a> TypeInspector<'a> {
pub fn as_union(&'a self) -> UnionTypeInspector<'a> {
let heap = self.heap.as_union();
let type_table = self.type_table.variant.as_union();
return UnionTypeInspector{ heap, type_table };
}
}
pub struct UnionTypeInspector<'a> {
heap: &'a UnionDefinition,
type_table: &'a UnionMonomorph,
}
impl UnionTypeInspector<'_> {
/// Retrieves union variant tag value.
pub fn get_variant_tag_value(&self, variant_name: &[u8]) -> Option<i64> {
let variant_index = self.heap.variants.iter()
.position(|v| v.identifier.value.as_bytes() == variant_name)?;
return Some(variant_index as i64);
}
}
|