Files
@ eba98ee7ffd6
Branch filter:
Location: CSY/reowolf/src/runtime2/component/component.rs
eba98ee7ffd6
35.0 KiB
application/rls-services+xml
Simplify use of port management
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | use std::fmt::{Display as FmtDisplay, Result as FmtResult, Formatter};
use crate::protocol::eval::{Prompt, EvalError, ValueGroup, PortId as EvalPortId};
use crate::protocol::*;
use crate::runtime2::*;
use crate::runtime2::communication::*;
use super::{CompCtx, CompPDL, CompId};
use super::component_context::*;
use super::component_random::*;
use super::component_internet::*;
use super::control_layer::*;
use super::consensus::*;
pub enum CompScheduling {
Immediate,
Requeue,
Sleep,
Exit,
}
/// Potential error emitted by a component
pub enum CompError {
/// Error originating from the code executor. Hence has an associated
/// source location.
Executor(EvalError),
/// Error originating from a component, but not necessarily associated with
/// a location in the source.
Component(String), // TODO: Maybe a different embedded value in the future?
/// Pure runtime error. Not necessarily originating from the component
/// itself. Should be treated as a very severe runtime-compromising error.
Runtime(RtError),
}
impl FmtDisplay for CompError {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
match self {
CompError::Executor(v) => v.fmt(f),
CompError::Component(v) => v.fmt(f),
CompError::Runtime(v) => v.fmt(f),
}
}
}
/// Generic representation of a component (as viewed by a scheduler).
pub(crate) trait Component {
/// Called upon the creation of the component. Note that the scheduler
/// context is officially running another component (the component that is
/// creating the new component).
fn on_creation(&mut self, comp_id: CompId, sched_ctx: &SchedulerCtx);
/// Called when a component crashes or wishes to exit. So is not called
/// right before destruction, other components may still hold a handle to
/// the component and send it messages!
fn on_shutdown(&mut self, sched_ctx: &SchedulerCtx);
/// Called if the component is created by another component and the messages
/// are being transferred between the two.
fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage);
/// Called if the component receives a new message. The component is
/// responsible for deciding where that messages goes.
fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message);
/// Called if the component's routine should be executed. The return value
/// can be used to indicate when the routine should be run again.
fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> CompScheduling;
}
/// Representation of the generic operating mode of a component. Although not
/// every state may be used by every kind of (builtin) component, this allows
/// writing standard handlers for particular events in a component's lifetime.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum CompMode {
NonSync, // not in sync mode
Sync, // in sync mode, can interact with other components
SyncEnd, // awaiting a solution, i.e. encountered the end of the sync block
BlockedGet, // blocked because we need to receive a message on a particular port
BlockedPut, // component is blocked because the port is blocked
BlockedSelect, // waiting on message to complete the select statement
StartExit, // temporary state: if encountered then we start the shutdown process.
BusyExit, // temporary state: waiting for Acks for all the closed ports, potentially waiting for sync round to finish
Exit, // exiting: shutdown process started, now waiting until the reference count drops to 0
}
impl CompMode {
pub(crate) fn is_in_sync_block(&self) -> bool {
use CompMode::*;
match self {
Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect => true,
NonSync | StartExit | BusyExit | Exit => false,
}
}
pub(crate) fn is_busy_exiting(&self) -> bool {
use CompMode::*;
match self {
NonSync | Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect => false,
StartExit | BusyExit => true,
Exit => false,
}
}
}
#[derive(Debug)]
pub(crate) enum ExitReason {
Termination, // regular termination of component
ErrorInSync,
ErrorNonSync,
}
impl ExitReason {
pub(crate) fn is_in_sync(&self) -> bool {
use ExitReason::*;
match self {
Termination | ErrorNonSync => false,
ErrorInSync => true,
}
}
pub(crate) fn is_error(&self) -> bool {
use ExitReason::*;
match self {
Termination => false,
ErrorInSync | ErrorNonSync => true,
}
}
}
/// Component execution state: the execution mode along with some descriptive
/// fields. Fields are public for ergonomic reasons, use member functions when
/// appropriate.
pub(crate) struct CompExecState {
pub mode: CompMode,
pub mode_port: PortId, // valid if blocked on a port (put/get)
pub mode_value: ValueGroup, // valid if blocked on a put
pub exit_reason: ExitReason, // valid if in StartExit/BusyExit/Exit mode
}
impl CompExecState {
pub(crate) fn new() -> Self {
return Self{
mode: CompMode::NonSync,
mode_port: PortId::new_invalid(),
mode_value: ValueGroup::default(),
exit_reason: ExitReason::Termination,
}
}
pub(crate) fn set_as_start_exit(&mut self, reason: ExitReason) {
self.mode = CompMode::StartExit;
self.exit_reason = reason;
}
pub(crate) fn set_as_blocked_get(&mut self, port: PortId) {
self.mode = CompMode::BlockedGet;
self.mode_port = port;
debug_assert!(self.mode_value.values.is_empty());
}
pub(crate) fn is_blocked_on_get(&self, port: PortId) -> bool {
return
self.mode == CompMode::BlockedGet &&
self.mode_port == port;
}
pub(crate) fn set_as_blocked_put(&mut self, port: PortId, value: ValueGroup) {
self.mode = CompMode::BlockedPut;
self.mode_port = port;
self.mode_value = value;
}
pub(crate) fn is_blocked_on_put(&self, port: PortId) -> bool {
return
self.mode == CompMode::BlockedPut &&
self.mode_port == port;
}
}
// TODO: Replace when implementing port sending. Should probably be incorporated
// into CompCtx (and rename CompCtx into CompComms)
pub(crate) type InboxMain = Vec<Option<DataMessage>>;
pub(crate) type InboxMainRef = [Option<DataMessage>];
pub(crate) type InboxBackup = Vec<DataMessage>;
/// Creates a new component based on its definition. Meaning that if it is a
/// user-defined component then we set up the PDL code state. Otherwise we
/// construct a custom component. This does NOT take care of port and message
/// management.
pub(crate) fn create_component(
protocol: &ProtocolDescription,
definition_id: ProcedureDefinitionId, type_id: TypeId,
arguments: ValueGroup, num_ports: usize
) -> Box<dyn Component> {
let definition = &protocol.heap[definition_id];
debug_assert!(definition.kind == ProcedureKind::Primitive || definition.kind == ProcedureKind::Composite);
if definition.source.is_builtin() {
// Builtin component
let component: Box<dyn Component> = match definition.source {
ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)),
ProcedureSource::CompTcpClient => Box::new(ComponentTcpClient::new(arguments)),
_ => unreachable!(),
};
return component;
} else {
// User-defined component
let prompt = Prompt::new(
&protocol.types, &protocol.heap,
definition_id, type_id, arguments
);
let component = CompPDL::new(prompt, num_ports);
return Box::new(component);
}
}
// -----------------------------------------------------------------------------
// Generic component messaging utilities (for sending and receiving)
// -----------------------------------------------------------------------------
/// Default handling of sending a data message. In case the port is blocked then
/// the `ExecState` will become blocked as well. Note that
/// `default_handle_control_message` will ensure that the port becomes
/// unblocked if so instructed by the receiving component. The returned
/// scheduling value must be used.
#[must_use]
pub(crate) fn default_send_data_message(
exec_state: &mut CompExecState, transmitting_port_id: PortId,
port_instruction: PortInstruction, value: ValueGroup,
sched_ctx: &SchedulerCtx, consensus: &mut Consensus, comp_ctx: &mut CompCtx
) -> Result<CompScheduling, (PortInstruction, String)> {
debug_assert_eq!(exec_state.mode, CompMode::Sync);
let port_handle = comp_ctx.get_port_handle(transmitting_port_id);
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.last_instruction = port_instruction;
let port_info = comp_ctx.get_port(port_handle);
debug_assert_eq!(port_info.kind, PortKind::Putter);
if port_info.state.is_closed() {
// Note: normally peer is eventually consistent, but if it has shut down
// then we can be sure it is consistent (I think?)
return Err((
port_info.last_instruction,
format!("Cannot send on this port, as the peer (id:{}) has shut down", port_info.peer_comp_id.0)
))
} else if port_info.state.is_blocked() {
// Port is blocked, so we cannot send
exec_state.set_as_blocked_put(transmitting_port_id, value);
return Ok(CompScheduling::Sleep);
} else {
// Port is not blocked, so send to the peer
let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
let peer_info = comp_ctx.get_peer(peer_handle);
let annotated_message = consensus.annotate_data_message(comp_ctx, port_info, value);
peer_info.handle.send_message_logged(sched_ctx, Message::Data(annotated_message), true);
return Ok(CompScheduling::Immediate);
}
}
pub(crate) enum IncomingData {
PlacedInSlot,
SlotFull(DataMessage),
}
/// Default handling of receiving a data message. In case there is no room for
/// the message it is returned from this function. Note that this function is
/// different from PDL code performing a `get` on a port; this is the case where
/// the message first arrives at the component.
// NOTE: This is supposed to be a somewhat temporary implementation. It would be
// nicest if the sending component can figure out it cannot send any more data.
#[must_use]
pub(crate) fn default_handle_incoming_data_message(
exec_state: &mut CompExecState, inbox_main: &mut InboxMain,
comp_ctx: &mut CompCtx, incoming_message: DataMessage,
sched_ctx: &SchedulerCtx, control: &mut ControlLayer
) -> IncomingData {
let port_handle = comp_ctx.get_port_handle(incoming_message.data_header.target_port);
let port_index = comp_ctx.get_port_index(port_handle);
comp_ctx.get_port_mut(port_handle).received_message_for_sync = true;
let port_value_slot = &mut inbox_main[port_index];
let target_port_id = incoming_message.data_header.target_port;
if port_value_slot.is_none() {
// We can put the value in the slot
*port_value_slot = Some(incoming_message);
// Check if we're blocked on receiving this message.
dbg_code!({
// Our port cannot have been blocked itself, because we're able to
// directly insert the message into its slot.
assert!(!comp_ctx.get_port(port_handle).state.is_blocked());
});
if exec_state.is_blocked_on_get(target_port_id) {
// Return to normal operation
exec_state.mode = CompMode::Sync;
exec_state.mode_port = PortId::new_invalid();
debug_assert!(exec_state.mode_value.values.is_empty());
}
return IncomingData::PlacedInSlot
} else {
// Slot is already full, so if the port was previously opened, it will
// now become closed
let port_info = comp_ctx.get_port_mut(port_handle);
if port_info.state.is_open() {
port_info.state.set(PortStateFlag::BlockedDueToFullBuffers);
let (peer_handle, message) =
control.initiate_port_blocking(comp_ctx, port_handle);
let peer = comp_ctx.get_peer(peer_handle);
peer.handle.send_message_logged(sched_ctx, Message::Control(message), true);
}
return IncomingData::SlotFull(incoming_message)
}
}
pub(crate) enum GetResult {
Received(DataMessage),
NoMessage,
Error((PortInstruction, String)),
}
/// Default attempt at trying to receive from a port (i.e. through a `get`, or
/// the equivalent operation for a builtin component). `target_port` is the port
/// we're trying to receive from, and the `target_port_instruction` is the
/// instruction we're attempting on this port.
pub(crate) fn default_attempt_get(
exec_state: &mut CompExecState, target_port: PortId, target_port_instruction: PortInstruction,
inbox_main: &mut InboxMainRef, inbox_backup: &mut InboxBackup, sched_ctx: &SchedulerCtx,
comp_ctx: &mut CompCtx, control: &mut ControlLayer, consensus: &mut Consensus
) -> GetResult {
let port_handle = comp_ctx.get_port_handle(target_port);
let port_index = comp_ctx.get_port_index(port_handle);
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.last_instruction = target_port_instruction;
if port_info.state.is_closed() {
let peer_id = port_info.peer_comp_id;
return GetResult::Error((
target_port_instruction,
format!("Cannot get from this port, as the peer component (id:{}) closed the port", peer_id.0)
));
}
if let Some(message) = &inbox_main[port_index] {
if consensus.try_receive_data_message(sched_ctx, comp_ctx, message) {
// We're allowed to receive this message
let message = inbox_main[port_index].take().unwrap();
debug_assert_eq!(target_port, message.data_header.target_port);
// Note: we can still run into an unrecoverable error when actually
// receiving this message
match default_handle_received_data_message(
target_port, target_port_instruction, inbox_main, inbox_backup,
comp_ctx, sched_ctx, control,
) {
Ok(()) => return GetResult::Received(message),
Err(location_and_message) => return GetResult::Error(location_and_message)
}
} else {
// We're not allowed to receive this message. This means that the
// receiver is attempting to receive something out of order with
// respect to the sender.
return GetResult::Error((target_port_instruction, String::from(
"Cannot get from this port, as this causes a deadlock. This happens if you `get` in a different order as another component `put`s"
)));
}
} else {
// We don't have a message waiting for us and the port is not blocked.
// So enter the BlockedGet state
exec_state.set_as_blocked_get(target_port);
return GetResult::NoMessage;
}
}
/// Default handling that has been received through a `get`. Will check if any
/// more messages are waiting, and if the corresponding port was blocked because
/// of full buffers (hence, will use the control layer to make sure the peer
/// will become unblocked).
pub(crate) fn default_handle_received_data_message(
targeted_port: PortId, port_instruction: PortInstruction,
inbox_main: &mut InboxMainRef, inbox_backup: &mut InboxBackup,
comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx, control: &mut ControlLayer
) -> Result<(), (PortInstruction, String)> {
let port_handle = comp_ctx.get_port_handle(targeted_port);
let port_index = comp_ctx.get_port_index(port_handle);
let slot = &mut inbox_main[port_index];
debug_assert!(slot.is_none()); // because we've just received from it
// Modify last-known location where port instruction was retrieved
let port_info = comp_ctx.get_port(port_handle);
debug_assert_ne!(port_info.last_instruction, PortInstruction::None); // set by caller
debug_assert!(port_info.state.is_open()); // checked by caller
// Check if there are any more messages in the backup buffer
for message_index in 0..inbox_backup.len() {
let message = &inbox_backup[message_index];
if message.data_header.target_port == targeted_port {
// One more message, place it in the slot
let message = inbox_backup.remove(message_index);
debug_assert!(comp_ctx.get_port(port_handle).state.is_blocked()); // since we're removing another message from the backup
*slot = Some(message);
return Ok(());
}
}
// Did not have any more messages, so if we were blocked, then we need to
// unblock the port now (and inform the peer of this unblocking)
if port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers) {
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers);
let (peer_handle, message) = control.cancel_port_blocking(comp_ctx, port_handle);
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true);
}
return Ok(());
}
/// Handles control messages in the default way. Note that this function may
/// take a lot of actions in the name of the caller: pending messages may be
/// sent, ports may become blocked/unblocked, etc. So the execution
/// (`CompExecState`), control (`ControlLayer`) and consensus (`Consensus`)
/// state may all change.
pub(crate) fn default_handle_control_message(
exec_state: &mut CompExecState, control: &mut ControlLayer, consensus: &mut Consensus,
message: ControlMessage, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx
) -> Result<(), (PortInstruction, String)> {
match message.content {
ControlMessageContent::Ack => {
default_handle_ack(control, message.id, sched_ctx, comp_ctx);
},
ControlMessageContent::BlockPort => {
// One of our messages was accepted, but the port should be
// blocked.
let port_to_block = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_block);
let port_info = comp_ctx.get_port_mut(port_handle);
debug_assert_eq!(port_info.kind, PortKind::Putter);
port_info.state.set(PortStateFlag::BlockedDueToFullBuffers);
},
ControlMessageContent::ClosePort(content) => {
// Request to close the port. We immediately comply and remove
// the component handle as well
let port_to_close = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_close);
// We're closing the port, so we will always update the peer of the
// port (in case of error messages)
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.peer_comp_id = message.sender_comp_id;
port_info.close_at_sync_end = true; // might be redundant (we might set it closed now)
let peer_comp_id = port_info.peer_comp_id;
let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
// One exception to sending an `Ack` is if we just closed the
// port ourselves, meaning that the `ClosePort` messages got
// sent to one another.
if let Some(control_id) = control.has_close_port_entry(port_handle, comp_ctx) {
// The two components (sender and this component) are closing
// the channel at the same time. So we don't care about the
// content of the `ClosePort` message.
default_handle_ack(control, control_id, sched_ctx, comp_ctx);
} else {
// Respond to the message
let port_info = comp_ctx.get_port(port_handle);
let last_instruction = port_info.last_instruction;
let port_has_had_message = port_info.received_message_for_sync;
default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
comp_ctx.change_port_peer(sched_ctx, port_handle, None);
// Handle any possible error conditions (which boil down to: the
// port has been used, but the peer has died). If not in sync
// mode then we close the port immediately.
// Note that `port_was_used` does not mean that any messages
// were actually received. It might also mean that e.g. the
// component attempted a `get`, but there were no messages, so
// now it is in the `BlockedGet` state.
let port_was_used = last_instruction != PortInstruction::None;
if exec_state.mode.is_in_sync_block() {
let closed_during_sync_round = content.closed_in_sync_round && port_was_used;
let closed_before_sync_round = !content.closed_in_sync_round && !port_has_had_message;
if closed_during_sync_round || closed_before_sync_round {
return Err((
last_instruction,
format!("Peer component (id:{}) shut down, so communication cannot (have) succeed(ed)", peer_comp_id.0)
));
}
} else {
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.state.set(PortStateFlag::Closed);
}
}
},
ControlMessageContent::UnblockPort => {
// We were previously blocked (or already closed)
let port_to_unblock = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_unblock);
let port_info = comp_ctx.get_port_mut(port_handle);
debug_assert_eq!(port_info.kind, PortKind::Putter);
debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers));
port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers);
default_handle_recently_unblocked_port(exec_state, consensus, port_handle, sched_ctx, comp_ctx);
},
ControlMessageContent::PortPeerChangedBlock => {
// The peer of our port has just changed. So we are asked to
// temporarily block the port (while our original recipient is
// potentially rerouting some of the in-flight messages) and
// Ack. Then we wait for the `unblock` call.
let port_to_change = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_change);
let port_info = comp_ctx.get_port_mut(port_handle);
let peer_comp_id = port_info.peer_comp_id;
port_info.state.set(PortStateFlag::BlockedDueToPeerChange);
let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
},
ControlMessageContent::PortPeerChangedUnblock(new_port_id, new_comp_id) => {
let port_to_change = message.target_port_id.unwrap();
let port_handle = comp_ctx.get_port_handle(port_to_change);
let port_info = comp_ctx.get_port(port_handle);
debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToPeerChange));
let old_peer_id = port_info.peer_comp_id;
let port_info = comp_ctx.get_port_mut(port_handle);
port_info.peer_port_id = new_port_id;
port_info.state.clear(PortStateFlag::BlockedDueToPeerChange);
comp_ctx.change_port_peer(sched_ctx, port_handle, Some(new_comp_id));
default_handle_recently_unblocked_port(exec_state, consensus, port_handle, sched_ctx, comp_ctx);
}
}
return Ok(());
}
/// Handles a component entering the synchronous block. Will ensure that the
/// `Consensus` and the `ComponentCtx` are initialized properly.
pub(crate) fn default_handle_sync_start(
exec_state: &mut CompExecState, inbox_main: &mut InboxMainRef,
sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
) {
sched_ctx.info("Component starting sync mode");
// If any messages are present for this sync round, set the appropriate flag
// and notify the consensus handler of the present messages
consensus.notify_sync_start(comp_ctx);
for (port_index, message) in inbox_main.iter().enumerate() {
if let Some(message) = message {
consensus.handle_incoming_data_message(comp_ctx, message);
let port_info = comp_ctx.get_port_by_index_mut(port_index);
port_info.received_message_for_sync = true;
}
}
// Modify execution state
debug_assert_eq!(exec_state.mode, CompMode::NonSync);
exec_state.mode = CompMode::Sync;
}
/// Handles a component that has reached the end of the sync block. This does
/// not necessarily mean that the component will go into the `NonSync` mode, as
/// it might have to wait for the leader to finish the round for everyone (see
/// `default_handle_sync_decision`)
pub(crate) fn default_handle_sync_end(
exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
consensus: &mut Consensus
) {
sched_ctx.info("Component ending sync mode (but possibly waiting for a solution)");
debug_assert_eq!(exec_state.mode, CompMode::Sync);
let decision = consensus.notify_sync_end_success(sched_ctx, comp_ctx);
exec_state.mode = CompMode::SyncEnd;
default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
}
/// Handles a component initiating the exiting procedure, and closing all of its
/// ports. Should only be called once per component (which is ensured by
/// checking and modifying the mode in the execution state).
#[must_use]
pub(crate) fn default_handle_start_exit(
exec_state: &mut CompExecState, control: &mut ControlLayer,
sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
) -> CompScheduling {
debug_assert_eq!(exec_state.mode, CompMode::StartExit);
sched_ctx.info(&format!("Component starting exit (reason: {:?})", exec_state.exit_reason));
exec_state.mode = CompMode::BusyExit;
let exit_inside_sync = exec_state.exit_reason.is_in_sync();
// If exiting while inside sync mode, report to the leader of the current
// round that we've failed.
if exit_inside_sync {
let decision = consensus.notify_sync_end_failure(sched_ctx, comp_ctx);
default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
}
// Iterating over ports by index to work around borrowing rules
for port_index in 0..comp_ctx.num_ports() {
let port = comp_ctx.get_port_by_index_mut(port_index);
if port.state.is_closed() || port.close_at_sync_end {
// Already closed, or in the process of being closed
continue;
}
// Mark as closed
let port_id = port.self_id;
port.state.set(PortStateFlag::Closed);
// Notify peer of closing
let port_handle = comp_ctx.get_port_handle(port_id);
let (peer, message) = control.initiate_port_closing(port_handle, exit_inside_sync, comp_ctx);
let peer_info = comp_ctx.get_peer(peer);
peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true);
}
return CompScheduling::Immediate; // to check if we can shut down immediately
}
/// Handles a component waiting until all peers are notified that it is quitting
/// (i.e. after calling `default_handle_start_exit`).
#[must_use]
pub(crate) fn default_handle_busy_exit(
exec_state: &mut CompExecState, control: &ControlLayer,
sched_ctx: &SchedulerCtx
) -> CompScheduling {
debug_assert_eq!(exec_state.mode, CompMode::BusyExit);
if control.has_acks_remaining() {
sched_ctx.info("Component busy exiting, still has `Ack`s remaining");
return CompScheduling::Sleep;
} else {
sched_ctx.info("Component busy exiting, now shutting down");
exec_state.mode = CompMode::Exit;
return CompScheduling::Exit;
}
}
/// Handles a potential synchronous round decision. If there was a decision then
/// the `Some(success)` value indicates whether the round succeeded or not.
/// Might also end up changing the `ExecState`.
///
/// Might be called in two cases:
/// 1. The component is in regular execution mode, at the end of a sync round,
/// and is waiting for a solution to the round.
/// 2. The component has encountered an error during a sync round and is
/// exiting, hence is waiting for a "Failure" message from the leader.
pub(crate) fn default_handle_sync_decision(
sched_ctx: &SchedulerCtx, exec_state: &mut CompExecState, comp_ctx: &mut CompCtx,
decision: SyncRoundDecision, consensus: &mut Consensus
) -> Option<bool> {
let success = match decision {
SyncRoundDecision::None => return None,
SyncRoundDecision::Solution => true,
SyncRoundDecision::Failure => false,
};
debug_assert!(
exec_state.mode == CompMode::SyncEnd || (
exec_state.mode.is_busy_exiting() && exec_state.exit_reason.is_error()
) || (
exec_state.mode.is_in_sync_block() && decision == SyncRoundDecision::Failure
)
);
sched_ctx.info(&format!("Handling decision {:?} (in mode: {:?})", decision, exec_state.mode));
consensus.notify_sync_decision(decision);
if success {
// We cannot get a success message if the component has encountered an
// error.
for port_index in 0..comp_ctx.num_ports() {
let port_info = comp_ctx.get_port_by_index_mut(port_index);
if port_info.close_at_sync_end {
port_info.state.set(PortStateFlag::Closed);
}
}
debug_assert_eq!(exec_state.mode, CompMode::SyncEnd);
exec_state.mode = CompMode::NonSync;
return Some(true);
} else {
// We may get failure both in all possible cases. But we should only
// modify the execution state if we're not already in exit mode
if !exec_state.mode.is_busy_exiting() {
sched_ctx.error("failed synchronous round, initiating exit");
exec_state.set_as_start_exit(ExitReason::ErrorNonSync);
}
return Some(false);
}
}
/// Performs the default action of printing the provided error, and then putting
/// the component in the state where it will shut down. Only to be used for
/// builtin components: their error message construction is simpler (and more
/// common) as they don't have any source code.
pub(crate) fn default_handle_error_for_builtin(
exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx,
location_and_message: (PortInstruction, String)
) {
let (_location, message) = location_and_message;
sched_ctx.error(&message);
let exit_reason = if exec_state.mode.is_in_sync_block() {
ExitReason::ErrorInSync
} else {
ExitReason::ErrorNonSync
};
exec_state.set_as_start_exit(exit_reason);
}
#[inline]
pub(crate) fn default_handle_exit(_exec_state: &CompExecState) -> CompScheduling {
debug_assert_eq!(_exec_state.mode, CompMode::Exit);
return CompScheduling::Exit;
}
// -----------------------------------------------------------------------------
// Internal messaging/state utilities
// -----------------------------------------------------------------------------
/// Handles an `Ack` for the control layer.
fn default_handle_ack(
control: &mut ControlLayer, control_id: ControlId,
sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx
) {
// Since an `Ack` may cause another one, handle them in a loop
let mut to_ack = control_id;
loop {
let (action, new_to_ack) = control.handle_ack(to_ack, sched_ctx, comp_ctx);
match action {
AckAction::SendMessage(target_comp, message) => {
// FIX @NoDirectHandle
let mut handle = sched_ctx.runtime.get_component_public(target_comp);
handle.send_message_logged(sched_ctx, Message::Control(message), true);
let _should_remove = handle.decrement_users();
debug_assert!(_should_remove.is_none());
},
AckAction::ScheduleComponent(to_schedule) => {
// FIX @NoDirectHandle
let mut handle = sched_ctx.runtime.get_component_public(to_schedule);
// Note that the component is intentionally not
// sleeping, so we just wake it up
debug_assert!(!handle.sleeping.load(std::sync::atomic::Ordering::Acquire));
let key = unsafe { to_schedule.upgrade() };
sched_ctx.runtime.enqueue_work(key);
let _should_remove = handle.decrement_users();
debug_assert!(_should_remove.is_none());
},
AckAction::None => {}
}
match new_to_ack {
Some(new_to_ack) => to_ack = new_to_ack,
None => break,
}
}
}
/// Little helper for sending the most common kind of `Ack`
fn default_send_ack(
causer_of_ack_id: ControlId, peer_handle: LocalPeerHandle,
sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx
) {
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, Message::Control(ControlMessage{
id: causer_of_ack_id,
sender_comp_id: comp_ctx.id,
target_port_id: None,
content: ControlMessageContent::Ack
}), true);
}
/// Handles the unblocking of a putter port. In case there is a pending message
/// on that port then it will be sent.
fn default_handle_recently_unblocked_port(
exec_state: &mut CompExecState, consensus: &mut Consensus,
port_handle: LocalPortHandle, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
) {
let port_info = comp_ctx.get_port_mut(port_handle);
let port_id = port_info.self_id;
debug_assert!(!port_info.state.is_blocked()); // should have been done by the caller
if exec_state.is_blocked_on_put(port_id) {
// Annotate the message that we're going to send
let port_info = comp_ctx.get_port(port_handle); // for immutable access
debug_assert_eq!(port_info.kind, PortKind::Putter);
let to_send = exec_state.mode_value.take();
let to_send = consensus.annotate_data_message(comp_ctx, port_info, to_send);
// Retrieve peer to send the message
let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
let peer_info = comp_ctx.get_peer(peer_handle);
peer_info.handle.send_message_logged(sched_ctx, Message::Data(to_send), true);
exec_state.mode = CompMode::Sync; // because we're blocked on a `put`, we must've started in the sync state.
exec_state.mode_port = PortId::new_invalid();
}
}
#[inline]
pub(crate) fn port_id_from_eval(port_id: EvalPortId) -> PortId {
return PortId(port_id.id);
}
#[inline]
pub(crate) fn port_id_to_eval(port_id: PortId) -> EvalPortId {
return EvalPortId{ id: port_id.0 };
}
|