Files @ ecc47971d535
Branch filter:

Location: CSY/reowolf/src/runtime2/runtime.rs

ecc47971d535 50.1 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
MH
WIP on handling sync solution messages
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
use std::sync::Arc;
use std::collections::{HashMap, VecDeque};
use std::collections::hash_map::{Entry};

use crate::{Polarity, PortId};
use crate::common::Id;
use crate::protocol::*;
use crate::protocol::eval::*;

use super::messages::*;

#[derive(Debug)]
pub enum AddComponentError {
    ModuleDoesNotExist,
    ConnectorDoesNotExist,
    InvalidArgumentType(usize), // value is index of (first) invalid argument
}

pub(crate) struct PortDesc {
    id: u32,
    peer_id: u32,
    owning_connector_id: Option<u32>,
    is_getter: bool, // otherwise one can only call `put`
}

pub(crate) struct ConnectorDesc {
    id: u32,
    in_sync: bool,
    pub(crate) branches: Vec<BranchDesc>, // first one is always non-speculative one
    spec_branches_active: VecDeque<u32>, // branches that can be run immediately
    spec_branches_pending_receive: HashMap<PortId, Vec<u32>>, // from port_id to branch index
    spec_branches_done: Vec<u32>,
    last_checked_done: u32,
    global_inbox: ConnectorInbox,
    global_outbox: ConnectorOutbox,
}

impl ConnectorDesc {
    /// Creates a new connector description. Implicit assumption is that there
    /// is one (non-sync) branch that can be immediately executed.
    fn new(id: u32, component_state: ComponentState, owned_ports: Vec<u32>) -> Self {
        Self{
            id,
            in_sync: false,
            branches: vec![BranchDesc::new_non_sync(component_state, owned_ports)],
            spec_branches_active: VecDeque::new(),
            spec_branches_pending_receive: HashMap::new(),
            spec_branches_done: Vec::new(),
            last_checked_done: 0,
            global_inbox: ConnectorInbox::new(),
            global_outbox: ConnectorOutbox::new(),
        }
    }
}

#[derive(Debug, PartialEq, Eq)]
pub(crate) enum BranchState {
    RunningNonSync, // regular running non-speculative branch
    RunningSync, // regular running speculative branch
    BranchPoint, // branch which ended up being a branching point
    ReachedEndSync, // branch that successfully reached the end-sync point, is a possible local solution
    Failed, // branch that became inconsistent
    Finished, // branch (necessarily non-sync) that reached end of code
}

#[derive(Debug, Clone)]
struct BranchPortDesc {
    last_registered_index: Option<u32>, // if putter, then last sent branch ID, if getter, then last received branch ID
    num_times_fired: u32, // number of puts/gets on this port
}

struct BranchContext {
    just_called_did_put: bool,
    pending_channel: Option<(Value, Value)>,
}

pub(crate) struct BranchDesc {
    index: u32,
    parent_index: Option<u32>,
    pub(crate) code_state: ComponentState,
    pub(crate) branch_state: BranchState,
    owned_ports: Vec<u32>,
    message_inbox: HashMap<(PortId, u32), ValueGroup>, // from (port id, 1-based recv index) to received value
    port_mapping: HashMap<PortId, BranchPortDesc>,
    branch_context: BranchContext,
}

impl BranchDesc {
    /// Creates the first non-sync branch of a connector
    fn new_non_sync(component_state: ComponentState, owned_ports: Vec<u32>) -> Self {
        Self{
            index: 0,
            parent_index: None,
            code_state: component_state,
            branch_state: BranchState::RunningNonSync,
            owned_ports,
            message_inbox: HashMap::new(),
            port_mapping: HashMap::new(),
            branch_context: BranchContext{
                just_called_did_put: false,
                pending_channel: None,
            }
        }
    }

    /// Creates a sync branch based on the supplied branch. This supplied branch
    /// is the branching point for the new one, i.e. the parent in the branching
    /// tree.
    fn new_sync_from(index: u32, branch_state: &BranchDesc) -> Self {
        // We expect that the given branche's context is not halfway handling a
        // `put(...)` or a `channel x -> y` statement.
        debug_assert!(!branch_state.branch_context.just_called_did_put);
        debug_assert!(branch_state.branch_context.pending_channel.is_none());

        Self{
            index,
            parent_index: Some(branch_state.index),
            code_state: branch_state.code_state.clone(),
            branch_state: BranchState::RunningSync,
            owned_ports: branch_state.owned_ports.clone(),
            message_inbox: branch_state.message_inbox.clone(),
            port_mapping: branch_state.port_mapping.clone(),
            branch_context: BranchContext{
                just_called_did_put: false,
                pending_channel: None,
            }
        }
    }
}

#[derive(PartialEq, Eq)]
enum Scheduling {
    Immediate,
    Later,
    NotNow,
}

#[derive(Clone, Copy, Eq, PartialEq, Debug)]
enum ProposedBranchConstraint {
    SilentPort(u32), // port id
    BranchNumber(u32), // branch id
    PortMapping(u32, u32), // particular port's mapped branch number
}

// Local solution of the connector
#[derive(Clone)]
struct ProposedConnectorSolution {
    final_branch_id: u32,
    all_branch_ids: Vec<u32>, // the final branch ID and, recursively, all parents
    port_mapping: HashMap<u32, Option<u32>>, // port IDs of the connector, mapped to their branch IDs (None for silent ports)
}

#[derive(Clone)]
struct ProposedSolution {
    connector_mapping: HashMap<u32, ProposedConnectorSolution>, // from connector ID to branch ID
    connector_constraints: HashMap<u32, Vec<ProposedBranchConstraint>>, // from connector ID to encountered branch numbers
    remaining_connectors: Vec<u32>, // connectors that still need to be visited
}

// TODO: @performance, use freelists+ids instead of HashMaps
pub struct Runtime {
    protocol: Arc<ProtocolDescription>,
    pub(crate) ports: HashMap<u32, PortDesc>,
    port_counter: u32,
    pub(crate) connectors: HashMap<u32, ConnectorDesc>,
    connector_counter: u32,
    connectors_active: VecDeque<u32>,
}

impl Runtime {
    pub fn new(pd: Arc<ProtocolDescription>) -> Self {
        Self{
            protocol: pd,
            ports: HashMap::new(),
            port_counter: 0,
            connectors: HashMap::new(),
            connector_counter: 0,
            connectors_active: VecDeque::new(),
        }
    }

    /// Creates a new channel that is not owned by any connector and returns its
    /// endpoints. The returned values are of the (putter port, getter port)
    /// respectively.
    pub fn add_channel(&mut self) -> (Value, Value) {
        let (put_id, get_id) = Self::add_owned_channel(&mut self.ports, &mut self.port_counter, None);
        return (
            port_value_from_id(None, put_id, true),
            port_value_from_id(None, get_id, false)
        );
    }

    pub fn add_component(&mut self, module: &str, procedure: &str, values: ValueGroup) -> Result<(), AddComponentError> {
        use AddComponentError as ACE;
        use crate::runtime::error::AddComponentError as OldACE;

        // TODO: Remove the responsibility of adding a component from the PD

        // Lookup module and the component
        // TODO: Remove this error enum translation. Note that for now this
        //  function forces port-only arguments
        let port_polarities = match self.protocol.component_polarities(module.as_bytes(), procedure.as_bytes()) {
            Ok(polarities) => polarities,
            Err(reason) => match reason {
                OldACE::NonPortTypeParameters => return Err(ACE::InvalidArgumentType(0)),
                OldACE::NoSuchModule => return Err(ACE::ModuleDoesNotExist),
                OldACE::NoSuchComponent => return Err(ACE::ModuleDoesNotExist),
                _ => unreachable!(),
            }
        };

        // Make sure supplied values (and types) are correct. At the same time
        // modify the port IDs such that they contain the ID of the connector
        // we're about the create.
        let component_id = self.generate_connector_id();
        let mut ports = Vec::with_capacity(values.values.len());
        
        for (value_idx, value) in values.values.iter().enumerate() {
            let polarity = &port_polarities[value_idx];

            match value {
                Value::Input(port_id) => {
                    if *polarity != Polarity::Getter {
                        return Err(ACE::InvalidArgumentType(value_idx))
                    }

                    ports.push(PortId(Id{
                        connector_id: component_id,
                        u32_suffix: port_id.0.u32_suffix,
                    }));
                },
                Value::Output(port_id) => {
                    if *polarity != Polarity::Putter {
                        return Err(ACE::InvalidArgumentType(value_idx))
                    }

                    ports.push(PortId(Id{
                        connector_id: component_id,
                        u32_suffix: port_id.0.u32_suffix
                    }));
                },
                _ => return Err(ACE::InvalidArgumentType(value_idx))
            }
        }

        // Instantiate the component, and mark the ports as being owned by the
        // newly instantiated component
        let component_state = self.protocol.new_component(module.as_bytes(), procedure.as_bytes(), &ports);
        let ports = ports.into_iter().map(|v| v.0.u32_suffix).collect();

        for port in &ports {
            let desc = self.ports.get_mut(port).unwrap();
            desc.owning_connector_id = Some(component_id);
        }

        self.connectors.insert(component_id, ConnectorDesc::new(component_id, component_state, ports));
        self.connectors_active.push_back(component_id);

        Ok(())
    }

    pub fn run(&mut self) {
        // Go through all active connectors
        while !self.connectors_active.is_empty() {
            // Run a single connector until it indicates we can run another
            // connector
            let next_id = self.connectors_active.pop_front().unwrap();
            let mut scheduling = Scheduling::Immediate;

            while scheduling == Scheduling::Immediate {
                scheduling = self.run_connector(next_id);
            }

            match scheduling {
                Scheduling::Immediate => unreachable!(),
                Scheduling::Later => self.connectors_active.push_back(next_id),
                Scheduling::NotNow => {},
            }

            // Deal with any outgoing messages and potential solutions
            self.empty_connector_outbox(next_id);
            self.check_connector_new_solutions(next_id);
        }
    }

    /// Runs a connector for as long as sensible, then returns `true` if the
    /// connector should be run again in the future, and return `false` if the
    /// connector has terminated. Note that a terminated connector still 
    /// requires cleanup.
    fn run_connector(&mut self, connector_id: u32) -> Scheduling {
        let desc = self.connectors.get_mut(&connector_id).unwrap();

        if desc.in_sync {
            return self.run_connector_sync_mode(connector_id);
        } else {
            return self.run_connector_regular_mode(connector_id);
        }
    }

    #[inline]
    fn run_connector_sync_mode(&mut self, connector_id: u32) -> Scheduling {
        // Retrieve connector and branch that is supposed to be run
        let desc = self.connectors.get_mut(&connector_id).unwrap();
        debug_assert!(desc.in_sync);
        debug_assert!(!desc.spec_branches_active.is_empty());

        let branch_index = desc.spec_branches_active.pop_front().unwrap();
        let branch = &mut desc.branches[branch_index as usize];
        debug_assert_eq!(branch_index, branch.index);

        // Run this particular branch to a next blocking point
        let mut run_context = Context{
            inbox: &branch.message_inbox,
            port_mapping: &branch.port_mapping,
            branch_ctx: &mut branch.branch_context,
        };

        let run_result = branch.code_state.run(&mut run_context, &self.protocol);

        match run_result {
            RunResult::BranchInconsistent => {
                // Speculative branch became inconsistent. So we don't
                // run it again
                branch.branch_state = BranchState::Failed;
            },
            RunResult::BranchMissingPortState(port_id) => {
                // Branch called `fires()` on a port that did not have a
                // value assigned yet. So branch and keep running.
                debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
                debug_assert!(branch.port_mapping.get(&port_id).is_none());

                let mut copied_branch = Self::duplicate_branch(desc, branch_index);
                let copied_index = copied_branch.index;

                copied_branch.port_mapping.insert(port_id, BranchPortDesc{
                    last_registered_index: None,
                    num_times_fired: 1,
                });

                let branch = &mut desc.branches[branch_index as usize]; // need to reborrow
                branch.port_mapping.insert(port_id, BranchPortDesc{
                    last_registered_index: None,
                    num_times_fired: 0,
                });

                // Run both again
                desc.branches.push(copied_branch);
                desc.spec_branches_active.push_back(branch_index);
                desc.spec_branches_active.push_back(copied_index);

                return Scheduling::Immediate;
            },
            RunResult::BranchMissingPortValue(port_id) => {
                // Branch just performed a `get()` on a port that did
                // not yet receive a value.

                // First check if a port value is assigned to the
                // current branch. If so, check if it is consistent.
                debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
                let mut insert_in_pending_receive = false;

                match branch.port_mapping.entry(port_id) {
                    Entry::Vacant(entry) => {
                        // No entry yet, so force to firing
                        entry.insert(BranchPortDesc{
                            last_registered_index: None,
                            num_times_fired: 1,
                        });
                        branch.branch_state = BranchState::BranchPoint;
                        insert_in_pending_receive = true;
                    },
                    Entry::Occupied(entry) => {
                        // Have an entry, check if it is consistent
                        let entry = entry.get();
                        if entry.num_times_fired == 0 {
                            // Inconsistent
                            branch.branch_state = BranchState::Failed;
                        } else {
                            // Perfectly fine, add to queue
                            debug_assert!(entry.last_registered_index.is_none());
                            assert_eq!(entry.num_times_fired, 1, "temp: keeping fires() for now");
                            branch.branch_state = BranchState::BranchPoint;
                            insert_in_pending_receive = true;
                        }
                    }
                }

                if insert_in_pending_receive {
                    // Perform the insert
                    match desc.spec_branches_pending_receive.entry(port_id) {
                        Entry::Vacant(entry) => {
                            entry.insert(vec![branch_index]);
                        }
                        Entry::Occupied(mut entry) => {
                            let entry = entry.get_mut();
                            debug_assert!(!entry.contains(&branch_index));
                            entry.push(branch_index);
                        }
                    }

                    // But also check immediately if we don't have a
                    // previously received message. If so, we
                    // immediately branch and accept the message
                    if let Some(messages) = desc.global_inbox.find_matching_message(port_id.0.u32_suffix, None) {
                        for message in messages {
                            let mut new_branch = Self::duplicate_branch(desc, branch_index);
                            let new_branch_idx = new_branch.index;
                            let new_port_desc = new_branch.port_mapping.get_mut(&port_id).unwrap();
                            new_port_desc.last_registered_index = Some(message.peer_cur_branch_id);
                            new_branch.message_inbox.insert((port_id, 1), message.message.clone());

                            desc.branches.push(new_branch);
                            desc.spec_branches_active.push_back(new_branch_idx);
                        }

                        if !messages.is_empty() {
                            return Scheduling::Immediate;
                        }
                    }
                }
            },
            RunResult::BranchAtSyncEnd => {
                // Check the branch for any ports that were not used and
                // insert them in the port mapping as not having fired.
                for port_id in branch.owned_ports.iter().copied() {
                    let port_id = PortId(Id{ connector_id: desc.id, u32_suffix: port_id });
                    if let Entry::Vacant(entry) = branch.port_mapping.entry(port_id) {
                        entry.insert(BranchPortDesc {
                            last_registered_index: None,
                            num_times_fired: 0
                        });
                    }
                }

                // Mark the branch as being done
                branch.branch_state = BranchState::ReachedEndSync;
                desc.spec_branches_done.push(branch_index);
            },
            RunResult::BranchPut(port_id, value_group) => {
                debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
                debug_assert_eq!(value_group.values.len(), 1); // can only send one value

                // Branch just performed a `put()`. Check if we have
                // assigned the port value and if so, if it is
                // consistent.
                let mut can_put = true;
                branch.branch_context.just_called_did_put = true;
                match branch.port_mapping.entry(port_id) {
                    Entry::Vacant(entry) => {
                        // No entry yet
                        entry.insert(BranchPortDesc{
                            last_registered_index: Some(branch.index),
                            num_times_fired: 1,
                        });
                    },
                    Entry::Occupied(mut entry) => {
                        // Pre-existing entry
                        let entry = entry.get_mut();
                        if entry.num_times_fired == 0 {
                            // This is 'fine' in the sense that we have
                            // a normal inconsistency in the branch.
                            branch.branch_state = BranchState::Failed;
                            can_put = false;
                        } else if entry.last_registered_index.is_none() {
                            // A put() that follows a fires()
                            entry.last_registered_index = Some(branch.index);
                        } else {
                            // This should be fine in the future. But
                            // for now we throw an error as it doesn't
                            // mesh well with the 'fires()' concept.
                            todo!("throw an error of some sort, then fail all related")
                        }
                    }
                }

                if can_put {
                    // Actually put the message in the outbox
                    let port_desc = self.ports.get(&port_id.0.u32_suffix).unwrap();
                    debug_assert_eq!(port_desc.owning_connector_id.unwrap(), connector_id);
                    let peer_id = port_desc.peer_id;
                    let peer_desc = self.ports.get(&peer_id).unwrap();
                    debug_assert!(peer_desc.owning_connector_id.is_some());

                    let peer_id = PortId(Id{
                        connector_id: peer_desc.owning_connector_id.unwrap(),
                        u32_suffix: peer_id
                    });

                    // For now this is the one and only time we're going
                    // to send a message. So for now we can't send a
                    // branch ID.
                    desc.global_outbox.insert_message(BufferedMessage{
                        sending_port: port_id,
                        receiving_port: peer_id,
                        peer_prev_branch_id: None,
                        peer_cur_branch_id: branch_index,
                        message: value_group,
                    });

                    // Finally, because we were able to put the message,
                    // we can run the branch again
                    desc.spec_branches_active.push_back(branch_index);
                    return Scheduling::Immediate;
                }
            },
            _ => unreachable!("got result '{:?}' from running component in sync mode", run_result),
        }

        // Did not return that we need to immediately schedule again, so
        // determine if we want to do so based on the current number of active
        // speculative branches
        if desc.spec_branches_active.is_empty() {
            return Scheduling::NotNow;
        } else {
            return Scheduling::Later;
        }
    }

    #[inline]
    fn run_connector_regular_mode(&mut self, connector_id: u32) -> Scheduling {
        // Retrieve the connector and the branch (which is always the first one,
        // since we assume we're not running in sync-mode).
        let desc = self.connectors.get_mut(&connector_id).unwrap();
        debug_assert!(!desc.in_sync);
        debug_assert!(desc.spec_branches_active.is_empty());
        debug_assert_eq!(desc.branches.len(), 1);

        let branch = &mut desc.branches[0];

        // Run this branch to its blocking point
        let mut run_context = Context{
            inbox: &branch.message_inbox,
            port_mapping: &branch.port_mapping,
            branch_ctx: &mut branch.branch_context,
        };
        let run_result = branch.code_state.run(&mut run_context, &self.protocol);

        match run_result {
            RunResult::ComponentTerminated => {
                branch.branch_state = BranchState::Finished;
                return Scheduling::NotNow
            },
            RunResult::ComponentAtSyncStart => {
                // Prepare for sync execution
                Self::prepare_branch_for_sync(desc);
                return Scheduling::Immediate;
            },
            RunResult::NewComponent(definition_id, monomorph_idx, arguments) => {
                // Find all references to ports in the provided arguments, the
                // ownership of these ports will be transferred to the connector
                // we're about to create.
                let mut ports = Vec::with_capacity(arguments.values.len());
                find_ports_in_value_group(&arguments, &mut ports);

                // Generate a new connector with its own state
                let new_component_id = self.generate_connector_id();
                let new_component_state = ComponentState {
                    prompt: Prompt::new(&self.protocol.types, &self.protocol.heap, definition_id, monomorph_idx, arguments)
                };

                for port_id in &ports {
                    let port = self.ports.get_mut(&port_id.0.u32_suffix).unwrap();
                    debug_assert_eq!(port.owning_connector_id.unwrap(), connector_id);
                    port.owning_connector_id = Some(new_component_id)
                }

                // Finally push the new connector into the registry
                let ports = ports.into_iter().map(|v| v.0.u32_suffix).collect();
                self.connectors.insert(new_component_id, ConnectorDesc::new(new_component_id, new_component_state, ports));
                self.connectors_active.push_back(new_component_id);

                return Scheduling::Immediate;
            },
            RunResult::NewChannel => {
                // Prepare channel
                debug_assert!(run_context.branch_ctx.pending_channel.is_none());
                let (put_id, get_id) = Self::add_owned_channel(&mut self.ports, &mut self.port_counter, Some(connector_id));
                run_context.branch_ctx.pending_channel = Some((
                    port_value_from_id(Some(connector_id), put_id, true),
                    port_value_from_id(Some(connector_id), get_id, false)
                ));

                return Scheduling::Immediate;
            },
            _ => unreachable!("got result '{:?}' from running component in non-sync mode", run_result),
        }
    }

    /// Puts all the messages that are currently in the outbox of a particular
    /// connector into the inbox of the receivers. If possible then branches
    /// will be created that receive those messages.
    fn empty_connector_outbox(&mut self, connector_index: u32) {
        loop {
            let connector = self.connectors.get_mut(&connector_index).unwrap();
            let message_to_send = connector.global_outbox.take_next_message_to_send();

            if message_to_send.is_none() {
                return;
            }

            // We have a message to send
            let message_to_send = message_to_send.unwrap();

            // Lookup the target connector
            let target_port = message_to_send.receiving_port;
            let port_desc = self.ports.get(&target_port.0.u32_suffix).unwrap();
            debug_assert_eq!(port_desc.owning_connector_id.unwrap(), target_port.0.connector_id);
            let target_connector_id = port_desc.owning_connector_id.unwrap();
            let target_connector = self.connectors.get_mut(&target_connector_id).unwrap();

            // In any case, always put the message in the global inbox
            target_connector.global_inbox.insert_message(message_to_send.clone());

            // Check if there are any branches that are waiting on
            // receives
            if let Some(branch_indices) = target_connector.spec_branches_pending_receive.get(&target_port) {
                // Check each of the branches for a port mapping that
                // matches the one on the message header
                for branch_index in branch_indices {
                    let branch = &mut target_connector.branches[*branch_index as usize];
                    debug_assert_eq!(branch.branch_state, BranchState::BranchPoint);

                    let mut can_branch = false;

                    if let Some(port_desc) = branch.port_mapping.get(&message_to_send.receiving_port) {
                        if port_desc.last_registered_index == message_to_send.peer_prev_branch_id && port_desc.num_times_fired == 1 {
                            can_branch = true;
                        }
                    }

                    if can_branch {
                        // Put the message inside a clone of the currently
                        // waiting branch
                        let mut new_branch = Self::duplicate_branch(target_connector, *branch_index);
                        let new_branch_idx = new_branch.index;
                        let new_port_desc = &mut new_branch.port_mapping.get_mut(&message_to_send.receiving_port).unwrap();
                        new_port_desc.last_registered_index = Some(message_to_send.peer_cur_branch_id);
                        new_branch.message_inbox.insert((message_to_send.receiving_port, 1), message_to_send.message.clone());

                        // And queue the branch for further execution
                        target_connector.branches.push(new_branch);
                        target_connector.spec_branches_active.push_back(new_branch_idx);
                        if !self.connectors_active.contains(&target_connector.id) {
                            self.connectors_active.push_back(target_connector.id);
                        }
                    }
                }
            }
        }
    }

    /// Checks a connector for the submitted solutions. After all neighbouring
    /// connectors have been checked all of their "last checked solution" index
    /// will be incremented.
    fn check_connector_new_solutions(&mut self, connector_id: u32) {
        // Take connector and start processing its solutions
        loop {
            let connector = self.connectors.get_mut(&connector_id).unwrap();
            if connector.last_checked_done == connector.spec_branches_done.len() as u32 {
                // Nothing to do
                return;
            }

            // We have a new solution
            let start_branch_index = connector.spec_branches_done[connector.last_checked_done as usize];
            connector.last_checked_done += 1;

            // Check the connector+branch combination to see if a global
            // solution has already been found
            if let Some(global_solution) = self.check_connector_solution(connector_id, start_branch_index) {
                // Found a global solution, apply it to all the connectors that
                // participate
                for (connector_id, local_solution) in global_solution.connector_mapping {
                    self.commit_connector_solution(connector_id, local_solution.final_branch_id);
                }
            }
        }
    }

    fn check_connector_solution(&mut self, first_connector_index: u32, first_branch_index: u32) -> Option<ProposedSolution> {
        // Take the connector and branch of interest
        let first_connector = self.connectors.get(&first_connector_index).unwrap();
        let first_branch = &first_connector.branches[first_branch_index as usize];
        debug_assert_eq!(first_branch.branch_state, BranchState::ReachedEndSync);

        // Setup the first solution
        let mut first_solution = ProposedSolution{
            connector_mapping: HashMap::new(),
            connector_constraints: HashMap::new(),
            remaining_connectors: Vec::new(),
        };
        let mut first_local_solution = ProposedConnectorSolution{
            final_branch_id: first_branch.index,
            all_branch_ids: Vec::new(),
            port_mapping: first_branch.port_mapping
                .iter()
                .map(|(port_id, port_info)| {
                    (port_id.0.u32_suffix, port_info.last_registered_index)
                })
                .collect(),
        };
        self.determine_branch_ids(first_connector, first_branch.index, &mut first_local_solution.all_branch_ids);
        first_solution.connector_mapping.insert(first_connector.id, first_local_solution);

        for (port_id, port_mapping) in first_branch.port_mapping.iter() {
            let port_desc = self.ports.get(&port_id.0.u32_suffix).unwrap();
            let peer_port_id = port_desc.peer_id;
            let peer_port_desc = self.ports.get(&peer_port_id).unwrap();
            let peer_connector_id = peer_port_desc.owning_connector_id.unwrap();

            let constraint = match port_mapping.last_registered_index {
                Some(branch_id) => ProposedBranchConstraint::BranchNumber(branch_id),
                None => ProposedBranchConstraint::SilentPort(peer_port_id),
            };

            match first_solution.connector_constraints.entry(peer_connector_id) {
                Entry::Vacant(entry) => {
                    // Not yet encountered
                    entry.insert(vec![constraint]);
                    first_solution.remaining_connectors.push(peer_connector_id);
                },
                Entry::Occupied(mut entry) => {
                    // Already encountered
                    let entry = entry.get_mut();
                    if !entry.contains(&constraint) {
                        entry.push(constraint);
                    }
                }
            }
        }

        // Setup storage for all possible solutions
        let mut all_solutions = Vec::new();
        all_solutions.push(first_solution);

        while !all_solutions.is_empty() {
            let mut cur_solution = all_solutions.pop().unwrap();

            if cur_solution.remaining_connectors.is_empty() {
                // All connectors have been visited, so commit the solution
                debug_assert!(cur_solution.connector_constraints.is_empty());
                return Some(cur_solution);
            } else {
                // Not all connectors have been visited yet, so take one of the
                // connectors and visit it.
                let target_connector = cur_solution.remaining_connectors.pop().unwrap();
                self.merge_solution_with_connector(&mut cur_solution, &mut all_solutions, target_connector);
            }
        }

        // No satisfying solution found
        return None;
    }

    fn merge_solution_with_connector(&self, cur_solution: &mut ProposedSolution, all_solutions: &mut Vec<ProposedSolution>, target_connector: u32) {
        debug_assert!(!cur_solution.connector_mapping.contains_key(&target_connector)); // not yet visited
        debug_assert!(cur_solution.connector_constraints.contains_key(&target_connector)); // but we encountered a reference to it

        let branch_constraints = cur_solution.connector_constraints.get(&target_connector).unwrap();
        let cur_connector = self.connectors.get(&target_connector).unwrap();

        // Make sure all propositions are unique
        for i in 0..branch_constraints.len() {
            let proposition_i = branch_constraints[i];
            for j in 0..i {
                let proposition_j = branch_constraints[j];
                debug_assert_ne!(proposition_i, proposition_j);
            }
        }

        // Go through the current connector's branches that have finished
        'branch_loop: for finished_branch_idx in cur_connector.spec_branches_done.iter().copied() {
            let finished_branch = &cur_connector.branches[finished_branch_idx as usize];

            // Construct a list of all the parent branch numbers
            let mut parent_branch_ids = Vec::new();
            self.determine_branch_ids(cur_connector, finished_branch_idx, &mut parent_branch_ids);

            // Go through all constraints and make sure they are satisfied by
            // the current branch
            let mut all_constraints_satisfied = true;

            for constraint in branch_constraints {
                match constraint {
                    ProposedBranchConstraint::SilentPort(port_id) => {
                        // Specified should have remained silent
                        let port_id = PortId(Id{
                            connector_id: target_connector,
                            u32_suffix: *port_id,
                        });
                        debug_assert!(finished_branch.port_mapping.contains_key(&port_id));
                        let mapped_port = finished_branch.port_mapping.get(&port_id).unwrap();
                        all_constraints_satisfied = all_constraints_satisfied && mapped_port.num_times_fired == 0;
                    },
                    ProposedBranchConstraint::BranchNumber(branch_id) => {
                        // Branch number should have appeared in the
                        // predecessor branches.
                        all_constraints_satisfied = all_constraints_satisfied && parent_branch_ids.contains(branch_id);
                    },
                    ProposedBranchConstraint::PortMapping(port_id, branch_id) => {
                        // Port should map to a particular branch number
                        let port_id = PortId(Id{
                            connector_id: target_connector,
                            u32_suffix: *port_id,
                        });
                        debug_assert!(finished_branch.port_mapping.contains_key(&port_id));
                        let mapped_port = finished_branch.port_mapping.get(&port_id).unwrap();
                        all_constraints_satisfied = all_constraints_satisfied && mapped_port.last_registered_index == Some(*branch_id);
                    }
                }

                if !all_constraints_satisfied {
                    break;
                }
            }

            if !all_constraints_satisfied {
                continue;
            }

            // If here, then all constraints on the finished branch are
            // satisfied. But the finished branch also puts constraints on the
            // other connectors. So either:
            // 1. Add them to the list of constraints a peer connector should
            //  adhere to.
            // 2. Make sure that the provided connector solution matches the
            //  constraints imposed by the currently considered finished branch
            //
            // To make our lives a bit easier we already insert our proposed
            // local solution into a prepared global solution. This makes
            // looking up remote ports easier (since the channel might have its
            // two ends owned by the same connector).
            let mut new_solution = cur_solution.clone();
            debug_assert!(!new_solution.remaining_connectors.contains(&target_connector));
            new_solution.connector_constraints.remove(&target_connector);
            new_solution.connector_mapping.insert(target_connector, ProposedConnectorSolution{
                final_branch_id: finished_branch.index,
                all_branch_ids: parent_branch_ids,
                port_mapping: finished_branch.port_mapping
                    .iter()
                    .map(|(port_id, port_desc)| {
                        (port_id.0.u32_suffix, port_desc.last_registered_index)
                    })
                    .collect(),
            });

            for (local_port_id, port_desc) in &finished_branch.port_mapping {
                // Retrieve port of peer
                let port_info = self.ports.get(&local_port_id.0.u32_suffix).unwrap();
                let peer_port_id = port_info.peer_id;
                let peer_port_info = self.ports.get(&peer_port_id).unwrap();
                let peer_connector_id = peer_port_info.owning_connector_id.unwrap();

                // If the connector was not present in the new global solution
                // yet, add it now, as it simplifies the following logic
                if !new_solution.connector_mapping.contains_key(&peer_connector_id) && !new_solution.remaining_connectors.contains(&peer_connector_id) {
                    new_solution.connector_constraints.insert(peer_connector_id, Vec::new());
                    new_solution.remaining_connectors.push(peer_connector_id);
                }

                if new_solution.remaining_connectors.contains(&peer_connector_id) {
                    // Constraint applies to a connector that has not yet been
                    // visited
                    debug_assert!(new_solution.connector_constraints.contains_key(&peer_connector_id));
                    debug_assert_ne!(peer_connector_id, target_connector);

                    let new_constraint = if port_desc.num_times_fired == 0 {
                        ProposedBranchConstraint::SilentPort(peer_port_id)
                    } else if peer_port_info.is_getter {
                        // Peer port is a getter, so we want its port to map to
                        // the branch number in our port mapping.
                        debug_assert!(port_desc.last_registered_index.is_some());
                        ProposedBranchConstraint::PortMapping(peer_port_id, port_desc.last_registered_index.unwrap())
                    } else {
                        // Peer port is a putter, so we want to restrict the
                        // solution's run to contain the branch ID we received.
                        ProposedBranchConstraint::BranchNumber(port_desc.last_registered_index.unwrap())
                    };

                    let peer_constraints = new_solution.connector_constraints.get_mut(&peer_connector_id).unwrap();
                    if !peer_constraints.contains(&new_constraint) {
                        peer_constraints.push(new_constraint);
                    }
                } else {
                    // Constraint applies to an already visited connector
                    let peer_solution = new_solution.connector_mapping.get(&peer_connector_id).unwrap();
                    if port_desc.num_times_fired == 0 {
                        let peer_mapped_id = peer_solution.port_mapping.get(&peer_port_id).unwrap();
                        if peer_mapped_id.is_some() {
                            all_constraints_satisfied = false;
                            break;
                        }
                    } else if peer_port_info.is_getter {
                        // Peer is getter, so its port should be mapped to one
                        // of our branch IDs. To simplify lookup we look at the
                        // last message we sent to the getter.
                        debug_assert!(port_desc.last_registered_index.is_some());
                        let peer_port = peer_solution.port_mapping.get(&peer_port_id)
                            .map_or(None, |v| *v);

                        if port_desc.last_registered_index != peer_port {
                            // No match
                            all_constraints_satisfied = false;
                            break;
                        }
                    } else {
                        // Peer is putter, so we expect to find our port mapping
                        // to match one of the branch numbers in the peer
                        // connector's local solution
                        debug_assert!(port_desc.last_registered_index.is_some());
                        let expected_branch_id = port_desc.last_registered_index.unwrap();

                        if !peer_solution.all_branch_ids.contains(&expected_branch_id) {
                            all_constraints_satisfied = false;
                            break;
                        }
                    }
                }
            }

            if !all_constraints_satisfied {
                // Final checks failed
                continue 'branch_loop
            }

            // We're sure that this branch matches the provided solution, so
            // push it onto the list of considered solutions
            all_solutions.push(new_solution);
        }
    }

    fn commit_connector_solution(&mut self, connector_id: u32, branch_id: u32) {
        // Retrieve connector and branch
        let connector = self.connectors.get_mut(&connector_id).unwrap();
        debug_assert_ne!(branch_id, 0); // because at 0 we have our initial backed-up non-sync branch
        debug_assert!(connector.in_sync);
        debug_assert!(connector.spec_branches_done.contains(&branch_id));

        // Put the selected solution in front, the branch at index 0 is the
        // "non-sync" branch.
        connector.branches.swap(0, branch_id as usize);
        connector.branches.truncate(1);

        // And reset the connector's state for further execution
        connector.in_sync = false;
        connector.spec_branches_active.clear();
        connector.spec_branches_pending_receive.clear();
        connector.spec_branches_done.clear();
        connector.last_checked_done = 0;
        connector.global_inbox.clear();
        connector.global_outbox.clear();

        // Do the same thing for the final selected branch
        let final_branch = &mut connector.branches[0];
        final_branch.index = 0;
        final_branch.parent_index = None;
        debug_assert_eq!(final_branch.branch_state, BranchState::ReachedEndSync);
        final_branch.branch_state = BranchState::RunningNonSync;
        final_branch.message_inbox.clear();
        final_branch.port_mapping.clear();

        // Might be that the connector was no longer running, if so, put it back
        // in the list of connectors to run
        if !self.connectors_active.contains(&connector_id) {
            self.connectors_active.push_back(connector_id);
        }
    }

    fn generate_connector_id(&mut self) -> u32 {
        let id = self.connector_counter;
        self.connector_counter += 1;
        return id;
    }

    // -------------------------------------------------------------------------
    // Helpers for port management
    // -------------------------------------------------------------------------

    #[inline]
    fn add_owned_channel(ports: &mut HashMap<u32, PortDesc>, port_counter: &mut u32, owning_connector_id: Option<u32>) -> (u32, u32) {
        let get_id = *port_counter;
        let put_id = *port_counter + 1;
        (*port_counter) += 2;

        ports.insert(get_id, PortDesc{
            id: get_id,
            peer_id: put_id,
            owning_connector_id,
            is_getter: true,
        });
        ports.insert(put_id, PortDesc{
            id: put_id,
            peer_id: get_id,
            owning_connector_id,
            is_getter: false,
        });

        return (put_id, get_id);
    }

    // -------------------------------------------------------------------------
    // Helpers for branch management
    // -------------------------------------------------------------------------

    /// Prepares a speculative branch for further execution from the connector's
    /// non-speculative base branch.
    fn prepare_branch_for_sync(desc: &mut ConnectorDesc) {
        // Ensure only one branch is active, the non-sync branch
        debug_assert!(!desc.in_sync);
        debug_assert_eq!(desc.branches.len(), 1);
        debug_assert!(desc.spec_branches_active.is_empty());
        let new_branch_index = 1;

        // Push first speculative branch as active branch
        let new_branch = BranchDesc::new_sync_from(new_branch_index, &desc.branches[0]);
        desc.branches.push(new_branch);
        desc.spec_branches_active.push_back(new_branch_index);
        desc.in_sync = true;
    }

    /// Duplicates a particular (speculative) branch and returns it. Due to
    /// borrowing rules in code that uses this helper the returned branch still
    /// needs to be pushed onto the member `branches`.
    fn duplicate_branch(desc: &ConnectorDesc, original_branch_idx: u32) -> BranchDesc {
        let original_branch = &desc.branches[original_branch_idx as usize];
        debug_assert!(desc.in_sync);

        let copied_index = desc.branches.len() as u32;
        let copied_branch = BranchDesc::new_sync_from(copied_index, original_branch);

        return copied_branch;
    }

    /// Retrieves all parent IDs of a particular branch. These numbers run from
    /// the leaf towards the parent.
    fn determine_branch_ids(&self, desc: &ConnectorDesc, first_branch_index: u32, result: &mut Vec<u32>) {
        let mut next_branch_index = first_branch_index;
        result.clear();

        loop {
            result.push(next_branch_index);
            let branch = &desc.branches[next_branch_index as usize];

            match branch.parent_index {
                Some(index) => next_branch_index = index,
                None => return,
            }
        }
    }
}

/// Context accessible by the code while being executed by the runtime. When the
/// code is being executed by the runtime it sometimes needs to interact with 
/// the runtime. This is achieved by the "code throwing an error code", after 
/// which the runtime modifies the appropriate variables and continues executing
/// the code again. 
struct Context<'a> {
    // Temporary references to branch related storage
    inbox: &'a HashMap<(PortId, u32), ValueGroup>,
    port_mapping: &'a HashMap<PortId, BranchPortDesc>,
    branch_ctx: &'a mut BranchContext,
}

impl<'a> crate::protocol::RunContext for Context<'a> {
    fn did_put(&mut self, _port: PortId) -> bool {
        // Note that we want "did put" to return false if we have fired zero
        // times, because this implies we did a prevous
        let old_value = self.branch_ctx.just_called_did_put;
        self.branch_ctx.just_called_did_put = false;
        return old_value;
    }

    fn get(&mut self, port: PortId) -> Option<ValueGroup> {
        let inbox_key = (port, 1);
        match self.inbox.get(&inbox_key) {
            None => None,
            Some(value) => Some(value.clone()),
        }
    }

    fn fires(&mut self, port: PortId) -> Option<Value> {
        match self.port_mapping.get(&port) {
            None => None,
            Some(port_info) => Some(Value::Bool(port_info.num_times_fired != 0)),
        }
    }

    fn get_channel(&mut self) -> Option<(Value, Value)> {
        self.branch_ctx.pending_channel.take()
    }
}

/// Recursively goes through the value group, attempting to find ports. 
/// Duplicates will only be added once.
fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortId>) {
    // Helper to check a value for a port and recurse if needed.
    fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortId>) {
        match value {
            Value::Input(port_id) | Value::Output(port_id) => {
                // This is an actual port
                for prev_port in ports.iter() {
                    if prev_port == port_id {
                        // Already added
                        return;
                    }
                }
                
                ports.push(*port_id);
            },
            Value::Array(heap_pos) | 
            Value::Message(heap_pos) |
            Value::String(heap_pos) |
            Value::Struct(heap_pos) |
            Value::Union(_, heap_pos) => {
                // Reference to some dynamic thing which might contain ports,
                // so recurse
                let heap_region = &group.regions[*heap_pos as usize];
                for embedded_value in heap_region {
                    find_port_in_value(group, embedded_value, ports);
                }
            },
            _ => {}, // values we don't care about
        }
    }
    
    // Clear the ports, then scan all the available values
    ports.clear();
    for value in &value_group.values {
        find_port_in_value(value_group, value, ports);
    }
}

fn port_value_from_id(connector_id: Option<u32>, port_id: u32, is_output: bool) -> Value {
    let connector_id = connector_id.unwrap_or(u32::MAX); // TODO: @hack, review entire PortId/ConnectorId/Id system
    if is_output {
        return Value::Output(PortId(Id{
            connector_id,
            u32_suffix: port_id
        }));
    } else {
        return Value::Input(PortId(Id{
            connector_id,
            u32_suffix: port_id,
        }));
    }
}