Files
@ f450ae18ef58
Branch filter:
Location: CSY/reowolf/src/runtime2/connector.rs
f450ae18ef58
30.4 KiB
application/rls-services+xml
merge with rewrite of connector/scheduler
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | use std::collections::HashMap;
use super::messages::{Message, Inbox};
use crate::protocol::{ComponentState, RunContext, RunResult};
use crate::{PortId, ProtocolDescription};
use crate::protocol::eval::{ValueGroup, Value, Prompt};
#[derive(Clone, Copy, PartialEq, Eq)]
pub(crate) struct PortIdLocal {
pub id: u32,
}
impl PortIdLocal {
pub fn new(id: u32) -> Self {
Self{ id }
}
// TODO: Unsure about this, maybe remove, then also remove all struct
// instances where I call this
pub fn new_invalid() -> Self {
Self{ id: u32::MAX }
}
}
/// Represents the identifier of a branch (the index within its container). An
/// ID of `0` generally means "no branch" (e.g. no parent, or a port did not
/// yet receive anything from any branch).
#[derive(Clone, Copy, PartialEq, Eq)]
pub(crate) struct BranchId {
pub index: u32,
}
impl BranchId {
fn new_invalid() -> Self {
Self{ index: 0 }
}
fn new(index: u32) -> Self {
debug_assert!(index != 0);
Self{ index }
}
#[inline]
fn is_valid(&self) -> bool {
return self.index != 0;
}
}
#[derive(PartialEq, Eq)]
pub(crate) enum SpeculativeState {
// Non-synchronous variants
RunningNonSync, // regular execution of code
Error, // encountered a runtime error
Finished, // finished executing connector's code
// Synchronous variants
RunningInSync, // running within a sync block
HaltedAtBranchPoint, // at a branching point (at a `get` call)
ReachedSyncEnd, // reached end of sync block, branch represents a local solution
Inconsistent, // branch can never represent a local solution, so halted
}
pub(crate) struct Branch {
index: BranchId,
parent_index: BranchId,
// Code execution state
code_state: ComponentState,
sync_state: SpeculativeState,
next_branch_in_queue: Option<u32>,
// Message/port state
inbox: HashMap<PortIdLocal, Message>, // TODO: @temporary, remove together with fires()
ports_delta: Vec<PortOwnershipDelta>,
}
impl Branch {
/// Constructs a non-sync branch. It is assumed that the code is at the
/// first instruction
fn new_initial_branch(component_state: ComponentState) -> Self {
Branch{
index: BranchId::new_invalid(),
parent_index: BranchId::new_invalid(),
code_state: component_state,
sync_state: SpeculativeState::RunningNonSync,
next_branch_in_queue: None,
inbox: HashMap::new(),
ports_delta: Vec::new(),
}
}
/// Constructs a sync branch. The provided branch is assumed to be the
/// parent of the new branch within the execution tree.
fn new_sync_branching_from(new_index: u32, parent_branch: &Branch) -> Self {
debug_assert!(
(parent_branch.sync_state == SpeculativeState::RunningNonSync && !parent_branch.parent_index.is_valid()) ||
(parent_branch.sync_state == SpeculativeState::HaltedAtBranchPoint)
);
Branch{
index: BranchId::new(new_index),
parent_index: parent_branch.index,
code_state: parent_branch.code_state.clone(),
sync_state: SpeculativeState::RunningInSync,
next_branch_in_queue: None,
inbox: parent_branch.inbox.clone(),
ports_delta: parent_branch.ports_delta.clone(),
}
}
}
#[derive(Clone)]
struct PortAssignment {
is_assigned: bool,
last_registered_branch_id: BranchId, // invalid branch ID implies not assigned yet
num_times_fired: u32,
}
impl PortAssignment {
fn new_unassigned() -> Self {
Self{
is_assigned: false,
last_registered_branch_id: BranchId::new_invalid(),
num_times_fired: 0,
}
}
#[inline]
fn mark_speculative(&mut self, num_times_fired: u32) {
debug_assert!(!self.last_registered_branch_id.is_valid());
self.is_assigned = true;
self.num_times_fired = num_times_fired;
}
#[inline]
fn mark_definitive(&mut self, branch_id: BranchId, num_times_fired: u32) {
self.is_assigned = true;
self.last_registered_branch_id = branch_id;
self.num_times_fired = num_times_fired;
}
}
#[derive(Clone, Eq)]
struct PortOwnershipDelta {
acquired: bool, // if false, then released ownership
port_id: PortIdLocal,
}
enum PortOwnershipError {
UsedInInteraction(PortIdLocal),
AlreadyGivenAway(PortIdLocal)
}
/// As the name implies, this contains a description of the ports associated
/// with a connector.
/// TODO: Extend documentation
struct ConnectorPorts {
// Essentially a mapping from `port_index` to `port_id`.
owned_ports: Vec<PortIdLocal>,
// Contains P*B entries, where P is the number of ports and B is the number
// of branches. One can find the appropriate mapping of port p at branch b
// at linear index `b*P+p`.
port_mapping: Vec<PortAssignment>
}
impl ConnectorPorts {
/// Constructs the initial ports object. Assumes the presence of the
/// non-sync branch at index 0. Will initialize all entries for the non-sync
/// branch.
fn new(owned_ports: Vec<PortIdLocal>) -> Self {
let num_ports = owned_ports.len();
let mut port_mapping = Vec::with_capacity(num_ports);
for _ in 0..num_ports {
port_mapping.push(PortAssignment::new_unassigned());
}
Self{ owned_ports, port_mapping }
}
/// Prepares the port mapping for a new branch. Assumes that there is no
/// intermediate branch index that we have skipped.
fn prepare_sync_branch(&mut self, parent_branch_idx: u32, new_branch_idx: u32) {
let num_ports = self.owned_ports.len();
let parent_base_idx = parent_branch_idx as usize * num_ports;
let new_base_idx = new_branch_idx as usize * num_ports;
debug_assert!(parent_branch_idx < new_branch_idx);
debug_assert!(new_base_idx == self.port_mapping.len());
self.port_mapping.reserve(num_ports);
for offset in 0..num_ports {
let parent_port = &self.port_mapping[parent_base_idx + offset];
self.port_mapping.push(parent_port.clone());
}
}
/// Removes a particular port from the connector. May only be done if the
/// connector is in non-sync mode
fn remove_port(&mut self, port_id: PortIdLocal) {
debug_assert!(self.port_mapping.len() == self.owned_ports.len()); // in non-sync mode
let port_index = self.get_port_index(port_id).unwrap();
self.owned_ports.remove(port_index);
self.port_mapping.remove(port_index);
}
/// Retrieves the index associated with a port id. Note that the port might
/// not exist (yet) if a speculative branch has just received the port.
/// TODO: But then again, one cannot use that port, right?
#[inline]
fn get_port_index(&self, port_id: PortIdLocal) -> Option<usize> {
for (idx, port) in self.owned_ports.iter().enumerate() {
if port == port_id {
return Some(idx)
}
}
return None
}
#[inline]
fn get_port(&self, branch_idx: u32, port_idx: usize) -> &PortAssignment {
let mapped_idx = self.mapped_index(branch_idx, port_idx);
return &self.port_mapping[mapped_idx];
}
#[inline]
fn get_port_mut(&mut self, branch_idx: u32, port_idx: usize) -> &mut PortAssignment {
let mapped_idx = self.mapped_index(branch_idx, port_idx);
return &mut self.port_mapping(mapped_idx);
}
fn num_ports(&self) -> usize {
return self.owned_ports.len();
}
// Function for internal use: retrieve index in flattened port mapping array
// based on branch/port index.
#[inline]
fn mapped_index(&self, branch_idx: u32, port_idx: usize) -> usize {
let branch_idx = branch_idx as usize;
let num_ports = self.owned_ports.len();
debug_assert!(port_idx < num_ports);
debug_assert!((branch_idx + 1) * num_ports <= self.port_mapping.len());
return branch_idx * num_ports + port_idx;
}
}
struct BranchQueue {
first: u32,
last: u32,
}
impl BranchQueue {
fn new() -> Self {
Self{ first: 0, last: 0 }
}
fn is_empty(&self) -> bool {
debug_assert!((self.first == 0) == (self.last == 0));
return self.first == 0;
}
}
pub(crate) struct Connector {
// State and properties of connector itself
id: u32,
in_sync: bool,
// Branch management
branches: Vec<Branch>, // first branch is always non-speculative one
sync_active: BranchQueue,
sync_pending_get: BranchQueue,
sync_finished: BranchQueue,
// Port/message management
ports: ConnectorPorts,
inbox: Inbox,
}
struct TempCtx {}
impl RunContext for TempCtx {
fn did_put(&mut self, port: PortId) -> bool {
todo!()
}
fn get(&mut self, port: PortId) -> Option<ValueGroup> {
todo!()
}
fn fires(&mut self, port: PortId) -> Option<Value> {
todo!()
}
fn get_channel(&mut self) -> Option<(Value, Value)> {
todo!()
}
}
impl Connector {
/// Constructs a representation of a connector. The assumption is that the
/// initial branch is at the first instruction of the connector's code,
/// hence is in a non-sync state.
pub fn new(id: u32, initial_branch: Branch, owned_ports: Vec<PortIdLocal>) -> Self {
Self{
id,
in_sync: false,
branches: vec![initial_branch],
sync_active: BranchQueue::new(),
sync_pending_get: BranchQueue::new(),
sync_finished: BranchQueue::new(),
ports: ConnectorPorts::new(owned_ports),
inbox: Inbox::new(),
}
}
pub fn is_in_sync_mode(&self) -> bool {
return self.in_sync;
}
/// Runs the connector in synchronous mode. Potential changes to the global
/// system's state are added to the `RunDeltaState` object by the connector,
/// where it is the caller's responsibility to immediately take care of
/// those changes. The return value indicates when (and if) the connector
/// needs to be scheduled again.
pub fn run_in_speculative_mode(&mut self, pd: &ProtocolDescription, results: &mut RunDeltaState) -> ConnectorScheduling {
debug_assert!(self.in_sync);
debug_assert!(!self.sync_active.is_empty());
let branch = Self::pop_branch(&mut self.branches, &mut self.sync_active);
// Run the branch to the next blocking point
let mut run_context = TempCtx{};
let run_result = branch.code_state.run(&mut run_context, pd);
// Match statement contains `return` statements only if the particular
// run result behind handled requires an immediate re-run of the
// connector.
match run_result {
RunResult::BranchInconsistent => {
// Speculative branch became inconsistent
branch.sync_state = SpeculativeState::Inconsistent;
},
RunResult::BranchMissingPortState(port_id) => {
// Branch called `fires()` on a port that does not yet have an
// assigned speculative value. So we need to create those
// branches
let local_port_id = PortIdLocal::new(port_id.0.u32_suffix);
let local_port_index = self.ports.get_port_index(local_port_id).unwrap();
debug_assert!(self.ports.owned_ports.contains(&local_port_id));
let silent_branch = &*branch;
// Create a copied branch who will have the port set to firing
let firing_index = self.branches.len() as u32;
let mut firing_branch = Branch::new_sync_branching_from(firing_index, silent_branch);
self.ports.prepare_sync_branch(branch.index.index, firing_index);
let firing_port = self.ports.get_port_mut(firing_index, local_port_index);
firing_port.mark_speculative(1);
// Assign the old branch a silent value
let silent_port = self.ports.get_port_mut(silent_branch.index.index, local_port_index);
silent_port.mark_speculative(0);
// Run both branches again
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, silent_branch.index);
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, firing_branch.index);
self.branches.push(firing_branch);
return ConnectorScheduling::Immediate;
},
RunResult::BranchMissingPortValue(port_id) => {
// Branch performed a `get` on a port that has not yet received
// a value in its inbox.
let local_port_id = PortIdLocal::new(port_id.0.u32_suffix);
let local_port_index = self.ports.get_port_index(local_port_id);
if local_port_index.is_none() {
todo!("deal with the case where the port is acquired");
}
let local_port_index = local_port_index.unwrap();
let port_mapping = self.ports.get_port_mut(branch.index.index, local_port_index);
// Check for port mapping assignment and, if present, if it is
// consistent
let is_valid_get = if port_mapping.is_assigned {
assert!(port_mapping.num_times_fired <= 1); // temporary, until we get rid of `fires`
port_mapping.num_times_fired == 1
} else {
// Not yet assigned
port_mapping.mark_speculative(1);
true
};
if is_valid_get {
// Mark as a branching point for future messages
branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_pending_get, branch.index);
// But if some messages can be immediately applied, do so
// now.
let messages = self.inbox.get_messages(local_port_id, port_mapping.last_registered_branch_id);
if !messages.is_empty() {
// TODO: If message contains ports, transfer ownership of port.
for message in messages {
// For each message, for the execution and feed it
// the provided message
let new_branch_index = self.branches.len() as u32;
let mut new_branch = Branch::new_sync_branching_from(new_branch_index, branch);
self.ports.prepare_sync_branch(branch.index.index, new_branch_index);
let port_mapping = self.ports.get_port_mut(new_branch_index, local_port_index);
port_mapping.last_registered_branch_id = message.sender_cur_branch_id;
debug_assert!(port_mapping.is_assigned && port_mapping.num_times_fired == 1);
new_branch.inbox.insert(local_port_id, message.clone());
// Schedule the new branch
debug_assert!(new_branch.sync_state == SpeculativeState::RunningInSync);
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, new_branch.index);
self.branches.push(new_branch);
}
// Because we have new branches to run, schedule
// immediately
return ConnectorScheduling::Immediate;
}
} else {
branch.sync_state = SpeculativeState::Inconsistent;
}
},
RunResult::BranchAtSyncEnd => {
// Branch is done, go through all of the ports that are not yet
// assigned and modify them to be
for port_idx in 0..self.ports.num_ports() {
let port_mapping = self.ports.get_port_mut(branch.index.index, port_idx);
if !port_mapping.is_assigned {
port_mapping.mark_speculative(0);
}
}
branch.sync_state = SpeculativeState::ReachedSyncEnd;
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_finished, branch.index);
},
RunResult::BranchPut(port_id, value_group) => {
// Branch performed a `put` on a particualar port.
let local_port_id = PortIdLocal{ id: port_id.0.u32_suffix };
let local_port_index = self.ports.get_port_index(local_port_id);
if local_port_index.is_none() {
todo!("handle case where port was received before (i.e. in ports_delta)")
}
let local_port_index = local_port_index.unwrap();
// Check the port mapping for consistency
// TODO: For now we can only put once, so that simplifies stuff
let port_mapping = self.ports.get_port_mut(branch.index.index, local_port_index);
let is_valid_put = if port_mapping.is_assigned {
// Already assigned, so must be speculative and one time
// firing, otherwise we are `put`ing multiple times.
if port_mapping.last_registered_branch_id.is_valid() {
// Already did a `put`
todo!("handle error through RunDeltaState");
} else {
// Valid if speculatively firing
port_mapping.num_times_fired == 1
}
} else {
// Not yet assigned, do so now
true
};
if is_valid_put {
// Put in run results for thread to pick up and transfer to
// the correct connector inbox.
port_mapping.mark_definitive(branch.index, 1);
let message = Message{
sending_port: local_port_id,
receiving_port: PortIdLocal::new_invalid(),
sender_prev_branch_id: BranchId::new_invalid(),
sender_cur_branch_id: branch.index,
message: value_group,
};
results.outbox.push(message);
return ConnectorScheduling::Immediate
} else {
branch.sync_state = SpeculativeState::Inconsistent;
}
},
_ => unreachable!("unexpected run result '{:?}' while running in sync mode", run_result),
}
// Not immediately scheduling, so schedule again if there are more
// branches to run
if self.sync_active.is_empty() {
return ConnectorScheduling::NotNow;
} else {
return ConnectorScheduling::Later;
}
}
/// Runs the connector in non-synchronous mode.
pub fn run_in_deterministic_mode(&mut self, pd: &ProtocolDescription, results: &mut RunDeltaState) -> ConnectorScheduling {
debug_assert!(!self.in_sync);
debug_assert!(self.sync_active.is_empty() && self.sync_pending_get.is_empty() && self.sync_finished.is_empty());
debug_assert!(self.branches.len() == 1);
let branch = &mut self.branches[0];
debug_assert!(branch.sync_state == SpeculativeState::RunningNonSync);
let mut run_context = TempCtx{};
let run_result = branch.code_state.run(&mut run_context, pd);
match run_result {
RunResult::ComponentTerminated => {
// Need to wait until all children are terminated
// TODO: Think about how to do this?
branch.sync_state = SpeculativeState::Finished;
return ConnectorScheduling::NotNow;
},
RunResult::ComponentAtSyncStart => {
// Prepare for sync execution and reschedule immediately
self.in_sync = true;
let first_sync_branch = Branch::new_sync_branching_from(1, branch);
Self::push_branch_into_queue(&mut self.branches, &mut self.sync_active, first_sync_branch.index);
self.branches.push(first_sync_branch);
return ConnectorScheduling::Later;
},
RunResult::NewComponent(definition_id, monomorph_idx, arguments) => {
// Construction of a new component. Find all references to ports
// inside of the arguments
debug_assert!(results.ports.is_empty());
find_ports_in_value_group(&arguments, &mut results.ports);
if !results.ports.is_empty() {
// Ports changing ownership
if let Err(_) = Self::release_ports_during_non_sync(&mut self.ports, branch, &results.ports) {
todo!("fatal error handling");
}
}
// Add connector for later execution
let new_connector_state = ComponentState {
prompt: Prompt::new(&pd.types, &pd.heap, definition_id, monomorph_idx, arguments)
};
let new_connector_ports = results.ports.clone(); // TODO: Do something with this
let new_connector_branch = Branch::new_initial_branch(new_connector_state);
let new_connector = Connector::new(0, new_connector_branch, new_connector_ports);
results.new_connectors.push(new_connector);
return ConnectorScheduling::Later;
},
RunResult::NewChannel => {
// Need to prepare a new channel
todo!("adding channels to some global context");
return ConnectorScheduling::Later;
},
_ => unreachable!("unexpected run result '{:?}' while running in non-sync mode", run_result),
}
}
// -------------------------------------------------------------------------
// Internal helpers
// -------------------------------------------------------------------------
// Helpers for management of the branches and their internally stored
// `next_branch_in_queue` and the `BranchQueue` objects. Essentially forming
// linked lists inside of the vector of branches.
#[inline]
fn pop_branch(branches: &mut Vec<Branch>, queue: &mut BranchQueue) -> &mut Branch {
debug_assert!(queue.first != 0);
let branch = &mut branches[queue.first as usize];
*queue.first = branch.next_branch_in_queue.unwrap_or(0);
branch.next_branch_in_queue = None;
if *queue.first == 0 {
// No more entries in queue
debug_assert_eq!(*queue.last, branch.index.index);
*queue.last = 0;
}
return branch;
}
#[inline]
fn push_branch_into_queue(branches: &mut Vec<Branch>, queue: &mut BranchQueue, to_push: BranchId) {
debug_assert!(to_push.is_valid());
let to_push = to_push.index;
if *queue.last == 0 {
// No branches in the queue at all
debug_assert_eq!(*queue.first, 0);
branches[to_push as usize].next_branch_in_queue = None;
*queue.first = to_push;
*queue.last = to_push;
} else {
// Pre-existing branch in the queue
debug_assert_ne!(*queue.first, 0);
branches[*queue.last as usize].next_branch_in_queue = Some(to_push);
*queue.last = to_push;
}
}
// Helpers for local port management. Specifically for adopting/losing
// ownership over ports
/// Releasing ownership of ports while in non-sync mode. This only occurs
/// while instantiating new connectors
fn release_ports_during_non_sync(ports: &mut ConnectorPorts, branch: &mut Branch, port_ids: &[PortIdLocal]) -> Result<(), PortOwnershipError> {
debug_assert!(!branch.index.is_valid()); // branch in non-sync mode
for port_id in port_ids {
// We must own the port, or something is wrong with our code
todo!("Set up some kind of message router");
debug_assert!(ports.get_port_index(*port_id).is_some());
ports.remove_port(*port_id);
}
return Ok(())
}
/// Releasing ownership of ports during a sync-session. Will provide an
/// error if the port was already used during a sync block.
fn release_ports_during_sync(ports: &mut ConnectorPorts, branch: &mut Branch, port_ids: &[PortIdLocal]) -> Result<(), PortOwnershipError> {
debug_assert!(branch.index.is_valid()); // branch in sync mode
for port_id in port_ids {
match ports.get_port_index(*port_id) {
Some(port_index) => {
// We (used to) own the port. Make sure it is not given away
// already and not used to put/get data.
let port_mapping = ports.get_port(branch.index.index, port_index);
if port_mapping.is_assigned && port_mapping.num_times_fired != 0 {
// Already used
return Err(PortOwnershipError::UsedInInteraction(*port_id));
}
for delta in &branch.ports_delta {
if delta.port_id == port_id {
// We cannot have acquired this port, because the
// call to `ports.get_port_index` returned an index.
debug_assert!(!delta.acquired);
return Err(PortOwnershipError::AlreadyGivenAway(*port_id));
}
}
branch.ports_delta.push(PortOwnershipDelta{
acquired: false,
port_id: *port_id,
});
},
None => {
// Not in port mapping, so we must have acquired it before,
// remove the acquirement.
let mut to_delete_index: isize = -1;
for (delta_idx, delta) in branch.ports_delta.iter().enumerate() {
if delta.port_id == *port_id {
debug_assert!(delta.acquired);
to_delete_index = delta_idx as isize;
break;
}
}
debug_assert!(to_delete_index != -1);
branch.ports_delta.remove(to_delete_index as usize);
}
}
}
return Ok(())
}
/// Acquiring ports during a sync-session.
fn acquire_ports_during_sync(ports: &mut ConnectorPorts, branch: &mut Branch, port_ids: &[PortIdLocal]) -> Result<(), PortOwnershipError> {
debug_assert!(branch.index.is_valid()); // branch in sync mode
'port_loop: for port_id in port_ids {
for (delta_idx, delta) in branch.ports_delta.iter().enumerate() {
if delta.port_id == *port_id {
if delta.acquired {
// Somehow already received this port.
// TODO: @security
todo!("take care of nefarious peers");
} else {
// Sending ports to ourselves
debug_assert!(ports.get_port_index(*port_id).is_some());
branch.ports_delta.remove(delta_idx);
continue 'port_loop;
}
}
}
// If here then we can safely acquire the new port
branch.ports_delta.push(PortOwnershipDelta{
acquired: true,
port_id: *port_id,
});
}
return Ok(())
}
}
/// A data structure passed to a connector whose code is being executed that is
/// used to queue up various state changes that have to be applied after
/// running, e.g. the messages the have to be transferred to other connectors.
// TODO: Come up with a better name
pub(crate) struct RunDeltaState {
// Variables that allow the thread running the connector to pick up global
// state changes and try to apply them.
pub outbox: Vec<Message>,
pub new_connectors: Vec<Connector>,
// Workspaces
pub ports: Vec<PortIdLocal>,
}
impl RunDeltaState {
/// Constructs a new `RunDeltaState` object with the default amount of
/// reserved memory
pub fn new() -> Self {
RunDeltaState{
outbox: Vec::with_capacity(64),
new_connectors: Vec::new(),
ports: Vec::with_capacity(64),
}
}
}
pub(crate) enum ConnectorScheduling {
Immediate, // Run again, immediately
Later, // Schedule for running, at some later point in time
NotNow, // Do not reschedule for running
}
/// Recursively goes through the value group, attempting to find ports.
/// Duplicates will only be added once.
fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortIdLocal>) {
// Helper to check a value for a port and recurse if needed.
fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortIdLocal>) {
match value {
Value::Input(port_id) | Value::Output(port_id) => {
// This is an actual port
let cur_port = PortIdLocal::new(port_id.0.u32_suffix);
for prev_port in ports.iter() {
if prev_port == cur_port {
// Already added
return;
}
}
ports.push(cur_port);
},
Value::Array(heap_pos) |
Value::Message(heap_pos) |
Value::String(heap_pos) |
Value::Struct(heap_pos) |
Value::Union(_, heap_pos) => {
// Reference to some dynamic thing which might contain ports,
// so recurse
let heap_region = &group.regions[*heap_pos as usize];
for embedded_value in heap_region {
find_port_in_value(group, embedded_value, ports);
}
},
_ => {}, // values we don't care about
}
}
// Clear the ports, then scan all the available values
ports.clear();
for value in &value_group.values {
find_port_in_value(value_group, value, ports);
}
}
|