Files
@ f4d1c8c04de6
Branch filter:
Location: CSY/reowolf/src/runtime2/branch.rs
f4d1c8c04de6
11.2 KiB
application/rls-services+xml
modified scheduler to use new ExecTree and Consensus
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | use std::collections::HashMap;
use std::ops::{Index, IndexMut};
use crate::protocol::ComponentState;
use crate::protocol::eval::{Value, ValueGroup};
use crate::runtime2::port::{Port, PortIdLocal};
/// Generic branch ID. A component will always have one branch: the
/// non-speculative branch. This branch has ID 0. Hence in a speculative context
/// we use this fact to let branch ID 0 denote the ID being invalid.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct BranchId {
pub index: u32
}
impl BranchId {
#[inline]
fn new_invalid() -> Self {
return Self{ index: 0 };
}
#[inline]
fn new(index: u32) -> Self {
debug_assert!(index != 0);
return Self{ index };
}
#[inline]
pub(crate) fn is_valid(&self) -> bool {
return self.index != 0;
}
}
#[derive(Debug, PartialEq, Eq)]
pub(crate) enum SpeculativeState {
// Non-synchronous variants
RunningNonSync, // regular execution of code
Error, // encountered a runtime error
Finished, // finished executing connector's code
// Synchronous variants
RunningInSync, // running within a sync block
HaltedAtBranchPoint, // at a branching point (at a `get` call)
ReachedSyncEnd, // reached end of sync block, branch represents a local solution
Inconsistent, // branch can never represent a local solution, so halted
}
/// The execution state of a branch. This envelops the PDL code and the
/// execution state. And derived from that: if we're ready to keep running the
/// code, or if we're halted for some reason (e.g. waiting for a message).
pub(crate) struct Branch {
pub id: BranchId,
pub parent_id: BranchId,
// Execution state
pub code_state: ComponentState,
pub sync_state: SpeculativeState,
pub awaiting_port: PortIdLocal, // only valid if in "awaiting message" queue. TODO: Maybe put in enum
pub next_in_queue: BranchId, // used by `ExecTree`/`BranchQueue`
pub inbox: HashMap<PortIdLocal, ValueGroup>, // TODO: Remove, currently only valid in single-get/put mode
pub prepared_channel: Option<(Value, Value)>, // TODO: Maybe remove?
}
impl Branch {
/// Creates a new non-speculative branch
pub(crate) fn new_non_sync(component_state: ComponentState) -> Self {
Branch {
id: BranchId::new_invalid(),
parent_id: BranchId::new_invalid(),
code_state: component_state,
sync_state: SpeculativeState::RunningNonSync,
awaiting_port: PortIdLocal::new_invalid(),
next_in_queue: BranchId::new_invalid(),
inbox: HashMap::new(),
prepared_channel: None,
}
}
/// Constructs a sync branch. The provided branch is assumed to be the
/// parent of the new branch within the execution tree.
fn new_sync(new_index: u32, parent_branch: &Branch) -> Self {
debug_assert!(
(parent_branch.sync_state == SpeculativeState::RunningNonSync && !parent_branch.parent_index.is_valid()) ||
(parent_branch.sync_state == SpeculativeState::HaltedAtBranchPoint)
);
debug_assert!(parent_branch.prepared_channel.is_none());
Branch {
id: BranchId::new(new_index),
parent_id: parent_branch.index,
code_state: parent_branch.code_state.clone(),
sync_state: SpeculativeState::RunningInSync,
awaiting_port: parent_branch.awaiting_port,
next_in_queue: BranchId::new_invalid(),
inbox: parent_branch.inbox.clone(),
prepared_channel: None,
}
}
/// Inserts a message into the branch for retrieval by a corresponding
/// `get(port)` call.
pub(crate) fn insert_message(&mut self, target_port: PortIdLocal, contents: ValueGroup) {
debug_assert!(target_port.is_valid());
debug_assert!(self.awaiting_port == target_port);
self.awaiting_port = PortIdLocal::new_invalid();
self.inbox.insert(target_port, contents);
}
}
/// Queue of branches. Just a little helper.
#[derive(Copy, Clone)]
struct BranchQueue {
first: BranchId,
last: BranchId,
}
impl BranchQueue {
#[inline]
fn new() -> Self {
Self{
first: BranchId::new_invalid(),
last: BranchId::new_invalid()
}
}
#[inline]
fn is_empty(&self) -> bool {
debug_assert!(self.first.is_valid() == self.last.is_valid());
return !self.first.is_valid();
}
}
const NUM_QUEUES: usize = 3;
pub(crate) enum QueueKind {
Runnable,
AwaitingMessage,
FinishedSync,
}
impl QueueKind {
fn as_index(&self) -> usize {
return match self {
QueueKind::Runnable => 0,
QueueKind::AwaitingMessage => 1,
QueueKind::FinishedSync => 2,
}
}
}
/// Execution tree of branches. Tries to keep the extra information stored
/// herein to a minimum. So the execution tree is aware of the branches, their
/// execution state and the way they're dependent on each other, but the
/// execution tree should not be aware of e.g. sync algorithms.
///
/// Note that the tree keeps track of multiple lists of branches. Each list
/// contains branches that ended up in a particular execution state. The lists
/// are described by the various `BranchQueue` instances and the `next_in_queue`
/// field in each branch.
pub(crate) struct ExecTree {
// All branches. the `parent_id` field in each branch implies the shape of
// the tree. Branches are index stable throughout a sync round.
pub branches: Vec<Branch>,
pub queues: [BranchQueue; NUM_QUEUES]
}
impl ExecTree {
/// Constructs a new execution tree with a single non-sync branch.
pub fn new(component: ComponentState) -> Self {
return Self {
branches: vec![Branch::new_non_sync(component)],
queues: [BranchQueue::new(); 3]
}
}
// --- Generic branch (queue) management
/// Returns if tree is in speculative mode
pub fn is_in_sync(&self) -> bool {
return self.branches.len() != 1;
}
/// Returns true if the particular queue is empty
pub fn queue_is_empty(&self, kind: QueueKind) -> bool {
return self.queues[kind.as_index()].is_empty();
}
/// Pops a branch (ID) from a queue.
pub fn pop_from_queue(&mut self, kind: QueueKind) -> Option<BranchId> {
let queue = &mut self.queues[kind.as_index()];
if queue.is_empty() {
return None;
} else {
let first_branch = &mut self.branches[queue.first.index as usize];
queue.first = first_branch.next_in_queue;
first_branch.next_in_queue = BranchId::new_invalid();
if !queue.first.is_valid() {
queue.last = BranchId::new_invalid();
}
return Some(first_branch.id);
}
}
/// Pushes a branch (ID) into a queue.
pub fn push_into_queue(&mut self, kind: QueueKind, id: BranchId) {
let queue = &mut self.queues[kind.as_index()];
if queue.is_empty() {
queue.first = id;
queue.last = id;
} else {
let last_branch = &mut self.branches[queue.last.index as usize];
last_branch.next_in_queue = id;
queue.last = id;
}
}
/// Returns the non-sync branch (TODO: better name?)
pub fn base_branch_mut(&mut self) -> &mut Branch {
debug_assert!(!self.is_in_sync());
return &mut self.branches[0];
}
/// Returns an iterator over all the elements in the queue of the given kind
pub fn iter_queue(&self, kind: QueueKind) -> BranchQueueIter {
let queue = &self.queues[kind.as_index()];
let index = queue.first as usize;
return BranchQueueIter {
branches: self.branches.as_slice(),
index,
}
}
/// Returns an iterator that starts with the provided branch, and then
/// continues to visit all of the branch's parents.
pub fn iter_parents(&self, branch_id: BranchId) -> BranchParentIter {
return BranchParentIter{
branches: self.branches.as_slice(),
index: branch_id.index as usize,
}
}
// --- Preparing and finishing a speculative round
/// Starts a synchronous round by cloning the non-sync branch and marking it
/// as the root of the speculative tree. The id of this root sync branch is
/// returned.
pub fn start_sync(&mut self) -> BranchId {
debug_assert!(!self.is_in_sync());
let sync_branch = Branch::new_sync(1, &self.branches[0]);
let sync_branch_id = sync_branch.id;
self.branches.push(sync_branch);
return sync_branch_id;
}
/// Creates a new speculative branch based on the provided one. The index to
/// retrieve this new branch will be returned.
pub fn fork_branch(&mut self, parent_branch_id: BranchId) -> BranchId {
debug_assert!(self.is_in_sync());
let parent_branch = &self[parent_branch_id];
let new_branch = Branch::new_sync(1, parent_branch);
let new_branch_id = new_branch.id;
return new_branch_id;
}
/// Collapses the speculative execution tree back into a deterministic one,
/// using the provided branch as the final sync result.
pub fn end_sync(&mut self, branch_id: BranchId) {
debug_assert!(self.is_in_sync());
debug_assert!(self.iter_queue(QueueKind::FinishedSync).any(|v| v.id == branch_id));
// Swap indicated branch into the first position
self.branches.swap(0, branch_id.index as usize);
self.branches.truncate(1);
// Reset all values to non-sync defaults
let branch = &mut self.branches[0];
branch.id = BranchId::new_invalid();
branch.parent_id = BranchId::new_invalid();
branch.sync_state = SpeculativeState::RunningNonSync;
branch.next_in_queue = BranchId::new_invalid();
// Clear out all the queues
for queue_idx in 0..NUM_QUEUES {
self.queues[queue_idx] = BranchQueue::new();
}
}
}
impl Index<BranchId> for ExecTree {
type Output = Branch;
fn index(&self, index: BranchId) -> &Self::Output {
debug_assert!(index.is_valid());
return &self.branches[index.index as usize];
}
}
impl IndexMut<BranchId> for ExecTree {
fn index_mut(&mut self, index: BranchId) -> &mut Self::Output {
debug_assert!(index.is_valid());
return &mut self.branches[index.index as usize];
}
}
pub struct BranchQueueIter<'a> {
branches: &'a [Branch],
index: usize,
}
impl<'a> Iterator for BranchQueueIter<'a> {
type Item = &'a Branch;
fn next(&mut self) -> Option<Self::Item> {
if self.index == 0 {
// i.e. the invalid branch index
return None;
}
let branch = &self.branches[self.index];
self.index = branch.next_in_queue.index as usize;
return Some(branch);
}
}
pub struct BranchParentIter<'a> {
branches: &'a [Branch],
index: usize,
}
impl<'a> Iterator for BranchParentIter<'a> {
type Item = &'a Branch;
fn next(&mut self) -> Option<Self::Item> {
if self.index == 0 {
return None;
}
let branch = &self.branches[self.index];
self.index = branch.parent_id.index as usize;
return Some(branch);
}
}
|