Files
@ f4d1c8c04de6
Branch filter:
Location: CSY/reowolf/src/runtime2/connector2.rs
f4d1c8c04de6
15.0 KiB
application/rls-services+xml
modified scheduler to use new ExecTree and Consensus
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | /// connector.rs
///
/// Represents a component. A component (and the scheduler that is running it)
/// has many properties that are not easy to subdivide into aspects that are
/// conceptually handled by particular data structures. That is to say: the code
/// that we run governs: running PDL code, keeping track of ports, instantiating
/// new components and transports (i.e. interacting with the runtime), running
/// a consensus algorithm, etc. But on the other hand, our data is rather
/// simple: we have a speculative execution tree, a set of ports that we own,
/// and a bit of code that we should run.
///
/// So currently the code is organized as following:
/// - The scheduler that is running the component is the authoritative source on
/// ports during *non-sync* mode. The consensus algorithm is the
/// authoritative source during *sync* mode. They retrieve each other's
/// state during the transitions. Hence port data exists duplicated between
/// these two datastructures.
/// - The execution tree is where executed branches reside. But the execution
/// tree is only aware of the tree shape itself (and keeps track of some
/// queues of branches that are in a particular state), and tends to store
/// the PDL program state. The consensus algorithm is also somewhat aware
/// of the execution tree, but only in terms of what is needed to complete
/// a sync round (for now, that means the port mapping in each branch).
/// Hence once more we have properties conceptually associated with branches
/// in two places.
/// - TODO: Write about handling messages, consensus wrapping data
/// - TODO: Write about way information is exchanged between PDL/component and scheduler through ctx
use std::sync::atomic::AtomicBool;
use crate::PortId;
use crate::common::ComponentState;
use crate::protocol::eval::{Prompt, Value, ValueGroup};
use crate::protocol::{RunContext, RunResult};
use crate::runtime2::consensus::find_ports_in_value_group;
use crate::runtime2::port::PortKind;
use super::branch::{Branch, BranchId, ExecTree, QueueKind, SpeculativeState};
use super::consensus::{Consensus, Consistency};
use super::inbox2::{DataMessageFancy, MessageFancy, SyncMessageFancy};
use super::inbox::PublicInbox;
use super::native::Connector;
use super::port::PortIdLocal;
use super::scheduler::{ComponentCtxFancy, SchedulerCtx};
pub(crate) struct ConnectorPublic {
pub inbox: PublicInbox,
pub sleeping: AtomicBool,
}
impl ConnectorPublic {
pub fn new(initialize_as_sleeping: bool) -> Self {
ConnectorPublic{
inbox: PublicInbox::new(),
sleeping: AtomicBool::new(initialize_as_sleeping),
}
}
}
#[derive(Eq, PartialEq)]
pub(crate) enum ConnectorScheduling {
Immediate, // Run again, immediately
Later, // Schedule for running, at some later point in time
NotNow, // Do not reschedule for running
Exit, // Connector has exited
}
pub(crate) struct ConnectorPDL {
tree: ExecTree,
consensus: Consensus,
}
struct ConnectorRunContext {}
impl RunContext for ConnectorRunContext{
fn did_put(&mut self, port: PortId) -> bool {
todo!()
}
fn get(&mut self, port: PortId) -> Option<ValueGroup> {
todo!()
}
fn fires(&mut self, port: PortId) -> Option<Value> {
todo!()
}
fn get_channel(&mut self) -> Option<(Value, Value)> {
todo!()
}
}
impl Connector for ConnectorPDL {
fn run(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtxFancy) -> ConnectorScheduling {
todo!()
}
}
impl ConnectorPDL {
pub fn new(initial: ComponentState) -> Self {
Self{
tree: ExecTree::new(initial),
consensus: Consensus::new(),
}
}
// --- Handling messages
pub fn handle_new_messages(&mut self, ctx: &mut ComponentCtxFancy) {
while let Some(message) = ctx.read_next_message() {
match message {
MessageFancy::Data(message) => handle_new_data_message(message, ctx),
MessageFancy::Sync(message) => handle_new_sync_message(message, ctx),
MessageFancy::Control(_) => unreachable!("control message in component"),
}
}
}
pub fn handle_new_data_message(&mut self, message: DataMessageFancy, ctx: &mut ComponentCtxFancy) {
// Go through all branches that are awaiting new messages and see if
// there is one that can receive this message.
debug_assert!(ctx.workspace_branches.is_empty());
self.consensus.handle_received_sync_header(&message.sync_header, ctx);
self.consensus.handle_received_data_header(&self.tree, &message.data_header, &mut ctx.workspace_branches);
for branch_id in ctx.workspace_branches.drain(..) {
// This branch can receive, so fork and given it the message
let receiving_branch_id = self.tree.fork_branch(branch_id);
self.consensus.notify_of_new_branch(branch_id, receiving_branch_id);
let receiving_branch = &mut self.tree[receiving_branch_id];
receiving_branch.insert_message(message.data_header.target_port, message.content.clone());
self.consensus.notify_of_received_message(branch_id, &message.data_header, &message.content);
// And prepare the branch for running
self.tree.push_into_queue(QueueKind::Runnable, receiving_branch_id);
}
}
pub fn handle_new_sync_message(&mut self, message: SyncMessageFancy, ctx: &mut ComponentCtxFancy) {
self.consensus.handle_received_sync_header(&message.sync_header, ctx);
todo!("handle content of message?");
}
// --- Running code
pub fn run_in_sync_mode(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut ComponentCtxFancy) -> ConnectorScheduling {
// Check if we have any branch that needs running
debug_assert!(self.tree.is_in_sync() && self.consensus.is_in_sync());
let branch_id = self.tree.pop_from_queue(QueueKind::Runnable);
if branch_id.is_none() {
return ConnectorScheduling::NotNow;
}
// Retrieve the branch and run it
let branch_id = branch_id.unwrap();
let branch = &mut self.tree[branch_id];
let mut run_context = ConnectorRunContext{};
let run_result = branch.code_state.run(&mut run_context, &sched_ctx.runtime.protocol_description);
// Handle the returned result. Note that this match statement contains
// explicit returns in case the run result requires that the component's
// code is ran again immediately
match run_result {
RunResult::BranchInconsistent => {
// Branch became inconsistent
branch.sync_state = SpeculativeState::Inconsistent;
},
RunResult::BranchMissingPortState(port_id) => {
// Branch called `fires()` on a port that has not been used yet.
let port_id = PortIdLocal::new(port_id.0.u32_suffix);
// Create two forks, one that assumes the port will fire, and
// one that assumes the port remains silent
branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
let firing_branch_id = self.tree.fork_branch(branch_id);
let silent_branch_id = self.tree.fork_branch(branch_id);
self.consensus.notify_of_new_branch(branch_id, firing_branch_id);
let _result = self.consensus.notify_of_speculative_mapping(firing_branch_id, port_id, true);
debug_assert_eq!(_result, Consistency::Valid);
self.consensus.notify_of_new_branch(branch_id, silent_branch_id);
let _result = self.consensus.notify_of_speculative_mapping(silent_branch_id, port_id, false);
debug_assert_eq!(_result, Consistency::Valid);
// Somewhat important: we push the firing one first, such that
// that branch is ran again immediately.
self.tree.push_into_queue(QueueKind::Runnable, firing_branch_id);
self.tree.push_into_queue(QueueKind::Runnable, silent_branch_id);
return ConnectorScheduling::Immediate;
},
RunResult::BranchMissingPortValue(port_id) => {
// Branch performed a `get()` on a port that does not have a
// received message on that port.
let port_id = PortIdLocal::new(port_id.0.u32_suffix);
let consistency = self.consensus.notify_of_speculative_mapping(branch_id, port_id, true);
if consistency == Consistency::Valid {
// `get()` is valid, so mark the branch as awaiting a message
branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
branch.awaiting_port = port_id;
self.tree.push_into_queue(QueueKind::AwaitingMessage, branch_id);
// Note: we only know that a branch is waiting on a message when
// it reaches the `get` call. But we might have already received
// a message that targets this branch, so check now.
let mut any_branch_received = false;
for message in comp_ctx.get_read_data_messages(port_id) {
if self.consensus.branch_can_receive(branch_id, &message.data_header) {
// This branch can receive the message, so we do the
// fork-and-receive dance
let recv_branch_id = self.tree.fork_branch(branch_id);
let branch = &mut self.tree[recv_branch_id];
branch.insert_message(port_id, message.content.clone());
self.consensus.notify_of_new_branch(branch_id, recv_branch_id);
self.consensus.notify_of_received_message(recv_branch_id, &message.data_header, &message.content);
self.tree.push_into_queue(QueueKind::Runnable, recv_branch_id);
any_branch_received = true;
}
}
if any_branch_received {
return ConnectorScheduling::Immediate;
}
} else {
branch.sync_state = SpeculativeState::Inconsistent;
}
}
RunResult::BranchAtSyncEnd => {
let consistency = self.consensus.notify_of_finished_branch(branch_id);
if consistency == Consistency::Valid {
branch.sync_state = SpeculativeState::ReachedSyncEnd;
self.tree.push_into_queue(QueueKind::FinishedSync, branch_id);
} else if consistency == Consistency::Inconsistent {
branch.sync_state == SpeculativeState::Inconsistent;
}
},
RunResult::BranchPut(port_id, content) => {
// Branch is attempting to send data
let port_id = PortIdLocal::new(port_id.0.u32_suffix);
let consistency = self.consensus.notify_of_speculative_mapping(branch_id, port_id, true);
if consistency == Consistency::Valid {
// `put()` is valid.
let (sync_header, data_header) = self.consensus.handle_message_to_send(branch_id, port_id, &content, comp_ctx);
comp_ctx.submit_message(MessageFancy::Data(DataMessageFancy{
sync_header, data_header, content
}));
self.tree.push_into_queue(QueueKind::Runnable, branch_id);
return ConnectorScheduling::Immediate;
} else {
branch.sync_state = SpeculativeState::Inconsistent;
}
},
_ => unreachable!("unexpected run result {:?} in sync mode", run_result),
}
// If here then the run result did not require a particular action. We
// return whether we have more active branches to run or not.
if self.tree.queue_is_empty(QueueKind::Runnable) {
return ConnectorScheduling::NotNow;
} else {
return ConnectorScheduling::Later;
}
}
pub fn run_in_deterministic_mode(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut ComponentCtxFancy) -> ConnectorScheduling {
debug_assert!(!self.tree.is_in_sync() && !self.consensus.is_in_sync());
let branch = self.tree.base_branch_mut();
debug_assert!(branch.sync_state == SpeculativeState::RunningNonSync);
let mut run_context = ConnectorRunContext{};
let run_result = branch.code_state.run(&mut run_context, &sched_ctx.runtime.protocol_description);
match run_result {
RunResult::ComponentTerminated => {
branch.sync_state = SpeculativeState::Finished;
return ConnectorScheduling::Exit;
},
RunResult::ComponentAtSyncStart => {
let current_ports = comp_ctx.notify_sync_start();
let sync_branch_id = self.tree.start_sync();
self.consensus.start_sync(current_ports);
self.tree.push_into_queue(QueueKind::Runnable, sync_branch_id);
return ConnectorScheduling::Immediate;
},
RunResult::NewComponent(definition_id, monomorph_idx, arguments) => {
// Note: we're relinquishing ownership of ports. But because
// we are in non-sync mode the scheduler will handle and check
// port ownership transfer.
debug_assert!(comp_ctx.workspace_ports.is_empty());
find_ports_in_value_group(&arguments, &mut comp_ctx.workspace_ports);
let new_state = ComponentState {
prompt: Prompt::new(
&sched_ctx.runtime.protocol_description.types,
&sched_ctx.runtime.protocol_description.heap,
definition_id, monomorph_idx, arguments
),
};
let new_component = ConnectorPDL::new(new_state);
comp_ctx.push_component(new_component, comp_ctx.workspace_ports.clone());
comp_ctx.workspace_ports.clear();
return ConnectorScheduling::Later;
},
RunResult::NewChannel => {
let (getter, putter) = sched_ctx.runtime.create_channel(comp_ctx.id);
debug_assert!(getter.kind == PortKind::Getter && putter.kind == PortKind::Putter);
branch.prepared_channel = Some((
Value::Input(PortId::new(putter.self_id.index)),
Value::Output(PortId::new(getter.self_id.index)),
));
comp_ctx.push_port(putter);
comp_ctx.push_port(getter);
return ConnectorScheduling::Immediate;
},
_ => unreachable!("unexpected run result '{:?}' while running in non-sync mode", run_result),
}
}
}
|