Files @ fd175763a0f7
Branch filter:

Location: CSY/reowolf/src/runtime/setup.rs

fd175763a0f7 21.1 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
Christopher Esterhuyse
refactoring
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
use crate::common::*;
use crate::runtime::*;
use std::io::ErrorKind::WouldBlock;

impl Connector {
    pub fn new_simple(
        proto_description: Arc<ProtocolDescription>,
        connector_id: ConnectorId,
    ) -> Self {
        let logger = Box::new(DummyLogger);
        // let logger = Box::new(DummyLogger);
        let surplus_sockets = 2;
        Self::new(logger, proto_description, connector_id, surplus_sockets)
    }
    pub fn new(
        mut logger: Box<dyn Logger>,
        proto_description: Arc<ProtocolDescription>,
        connector_id: ConnectorId,
        surplus_sockets: u16,
    ) -> Self {
        log!(&mut *logger, "Created with connector_id {:?}", connector_id);
        Self {
            unphased: ConnectorUnphased {
                proto_description,
                proto_components: Default::default(),
                logger,
                id_manager: IdManager::new(connector_id),
                native_ports: Default::default(),
                port_info: Default::default(),
            },
            phased: ConnectorPhased::Setup { endpoint_setups: Default::default(), surplus_sockets },
        }
    }
    pub fn new_net_port(
        &mut self,
        polarity: Polarity,
        sock_addr: SocketAddr,
        endpoint_polarity: EndpointPolarity,
    ) -> Result<PortId, ()> {
        let Self { unphased: up, phased } = self;
        match phased {
            ConnectorPhased::Setup { endpoint_setups, .. } => {
                let endpoint_setup = EndpointSetup { sock_addr, endpoint_polarity };
                let p = up.id_manager.new_port_id();
                up.native_ports.insert(p);
                // {polarity, route} known. {peer} unknown.
                up.port_info.polarities.insert(p, polarity);
                up.port_info.routes.insert(p, Route::LocalComponent(LocalComponentId::Native));
                log!(
                    up.logger,
                    "Added net port {:?} with polarity {:?} and endpoint setup {:?} ",
                    p,
                    polarity,
                    &endpoint_setup
                );
                endpoint_setups.push((p, endpoint_setup));
                Ok(p)
            }
            ConnectorPhased::Communication { .. } => Err(()),
        }
    }
    pub fn connect(&mut self, timeout: Option<Duration>) -> Result<(), ConnectError> {
        use ConnectError::*;
        let Self { unphased: up, phased } = self;
        match phased {
            ConnectorPhased::Communication { .. } => {
                log!(up.logger, "Call to connecting in connected state");
                Err(AlreadyConnected)
            }
            ConnectorPhased::Setup { endpoint_setups, .. } => {
                log!(up.logger, "~~~ CONNECT called timeout {:?}", timeout);
                let deadline = timeout.map(|to| Instant::now() + to);
                // connect all endpoints in parallel; send and receive peer ids through ports
                let mut endpoint_manager = new_endpoint_manager(
                    &mut *up.logger,
                    endpoint_setups,
                    &mut up.port_info,
                    deadline,
                )?;
                log!(
                    up.logger,
                    "Successfully connected {} endpoints",
                    endpoint_manager.endpoint_exts.len()
                );
                // leader election and tree construction
                let neighborhood = init_neighborhood(
                    up.id_manager.connector_id,
                    &mut *up.logger,
                    &mut endpoint_manager,
                    deadline,
                )?;
                log!(up.logger, "Successfully created neighborhood {:?}", &neighborhood);
                log!(up.logger, "connect() finished. setup phase complete");
                // TODO session optimization goes here
                self.phased = ConnectorPhased::Communication(ConnectorCommunication {
                    round_index: 0,
                    endpoint_manager,
                    neighborhood,
                    mem_inbox: Default::default(),
                    native_batches: vec![Default::default()],
                    round_result: Ok(None),
                });
                Ok(())
            }
        }
    }
}

fn new_endpoint_manager(
    logger: &mut dyn Logger,
    endpoint_setups: &[(PortId, EndpointSetup)],
    port_info: &mut PortInfo,
    deadline: Option<Instant>,
) -> Result<EndpointManager, ConnectError> {
    ////////////////////////////////////////////
    use ConnectError::*;
    const BOTH: Interest = Interest::READABLE.add(Interest::WRITABLE);
    struct Todo {
        todo_endpoint: TodoEndpoint,
        local_port: PortId,
        sent_local_port: bool,          // true <-> I've sent my local port
        recv_peer_port: Option<PortId>, // Some(..) <-> I've received my peer's port
    }
    enum TodoEndpoint {
        Listener(TcpListener),
        Endpoint(Endpoint),
    }
    fn init_todo(
        token: Token,
        local_port: PortId,
        endpoint_setup: &EndpointSetup,
        poll: &mut Poll,
    ) -> Result<Todo, ConnectError> {
        let todo_endpoint = if let EndpointPolarity::Active = endpoint_setup.endpoint_polarity {
            let mut stream = TcpStream::connect(endpoint_setup.sock_addr)
                .expect("mio::TcpStream connect should not fail!");
            poll.registry().register(&mut stream, token, BOTH).unwrap();
            TodoEndpoint::Endpoint(Endpoint { stream, inbox: vec![] })
        } else {
            let mut listener = TcpListener::bind(endpoint_setup.sock_addr)
                .map_err(|_| BindFailed(endpoint_setup.sock_addr))?;
            poll.registry().register(&mut listener, token, BOTH).unwrap();
            TodoEndpoint::Listener(listener)
        };
        Ok(Todo { todo_endpoint, local_port, sent_local_port: false, recv_peer_port: None })
    };
    ////////////////////////////////////////////

    // 1. Start to construct EndpointManager
    let mut poll = Poll::new().map_err(|_| PollInitFailed)?;
    let mut events = Events::with_capacity(endpoint_setups.len() * 2 + 4);
    let mut polled_undrained = IndexSet::default();
    let mut delayed_messages = vec![];

    // 2. create a registered (TcpListener/Endpoint) for passive / active respectively
    let mut todos = endpoint_setups
        .iter()
        .enumerate()
        .map(|(index, (local_port, endpoint_setup))| {
            init_todo(Token(index), *local_port, endpoint_setup, &mut poll)
        })
        .collect::<Result<Vec<Todo>, ConnectError>>()?;

    // 3. Using poll to drive progress:
    //    - accept an incoming connection for each TcpListener (turning them into endpoints too)
    //    - for each endpoint, send the local PortId
    //    - for each endpoint, recv the peer's PortId, and
    let mut setup_incomplete: HashSet<usize> = (0..todos.len()).collect();
    while !setup_incomplete.is_empty() {
        let remaining = if let Some(deadline) = deadline {
            Some(deadline.checked_duration_since(Instant::now()).ok_or(Timeout)?)
        } else {
            None
        };
        poll.poll(&mut events, remaining).map_err(|_| PollFailed)?;
        for event in events.iter() {
            let token = event.token();
            let Token(index) = token;
            let todo: &mut Todo = &mut todos[index];
            if let TodoEndpoint::Listener(listener) = &mut todo.todo_endpoint {
                match listener.accept() {
                    Ok((mut stream, peer_addr)) => {
                        poll.registry().deregister(listener).unwrap();
                        poll.registry().register(&mut stream, token, BOTH).unwrap();
                        log!(
                            logger,
                            "Endpoint[{}] accepted a connection from {:?}",
                            index,
                            peer_addr
                        );
                        let endpoint = Endpoint { stream, inbox: vec![] };
                        todo.todo_endpoint = TodoEndpoint::Endpoint(endpoint);
                    }
                    Err(e) if e.kind() == WouldBlock => {}
                    Err(_) => return Err(AcceptFailed(listener.local_addr().unwrap())),
                }
            }
            match todo {
                Todo {
                    todo_endpoint: TodoEndpoint::Endpoint(endpoint),
                    local_port,
                    sent_local_port,
                    recv_peer_port,
                    ..
                } => {
                    if !setup_incomplete.contains(&index) {
                        continue;
                    }
                    let local_polarity = *port_info.polarities.get(local_port).unwrap();
                    if event.is_writable() && !*sent_local_port {
                        let msg = Msg::SetupMsg(SetupMsg::MyPortInfo(MyPortInfo {
                            polarity: local_polarity,
                            port: *local_port,
                        }));
                        endpoint
                            .send(&msg)
                            .map_err(|e| {
                                EndpointSetupError(endpoint.stream.local_addr().unwrap(), e)
                            })
                            .unwrap();
                        log!(logger, "endpoint[{}] sent msg {:?}", index, &msg);
                        *sent_local_port = true;
                    }
                    if event.is_readable() && recv_peer_port.is_none() {
                        let maybe_msg = endpoint.try_recv(logger).map_err(|e| {
                            EndpointSetupError(endpoint.stream.local_addr().unwrap(), e)
                        })?;
                        if maybe_msg.is_some() && !endpoint.inbox.is_empty() {
                            polled_undrained.insert(index);
                        }
                        match maybe_msg {
                            None => {} // msg deserialization incomplete
                            Some(Msg::SetupMsg(SetupMsg::MyPortInfo(peer_info))) => {
                                log!(logger, "endpoint[{}] got peer info {:?}", index, peer_info);
                                if peer_info.polarity == local_polarity {
                                    return Err(ConnectError::PortPeerPolarityMismatch(
                                        *local_port,
                                    ));
                                }
                                *recv_peer_port = Some(peer_info.port);
                                // 1. finally learned the peer of this port!
                                port_info.peers.insert(*local_port, peer_info.port);
                                // 2. learned the info of this peer port
                                port_info.polarities.insert(peer_info.port, peer_info.polarity);
                                port_info.peers.insert(peer_info.port, *local_port);
                                port_info.routes.insert(peer_info.port, Route::Endpoint { index });
                            }
                            Some(inappropriate_msg) => {
                                log!(
                                    logger,
                                    "delaying msg {:?} during channel setup phase",
                                    inappropriate_msg
                                );
                                delayed_messages.push((index, inappropriate_msg));
                            }
                        }
                    }
                    if *sent_local_port && recv_peer_port.is_some() {
                        setup_incomplete.remove(&index);
                        log!(logger, "endpoint[{}] is finished!", index);
                    }
                }
                Todo { todo_endpoint: TodoEndpoint::Listener(_), .. } => unreachable!(),
            }
        }
        events.clear();
    }
    let endpoint_exts = todos
        .into_iter()
        .enumerate()
        .map(|(index, Todo { todo_endpoint, local_port, .. })| EndpointExt {
            endpoint: match todo_endpoint {
                TodoEndpoint::Endpoint(mut endpoint) => {
                    poll.registry()
                        .reregister(&mut endpoint.stream, Token(index), Interest::READABLE)
                        .unwrap();
                    endpoint
                }
                TodoEndpoint::Listener(..) => unreachable!(),
            },
            getter_for_incoming: local_port,
        })
        .collect();
    Ok(EndpointManager {
        poll,
        events,
        polled_undrained,
        undelayed_messages: delayed_messages, // no longer delayed
        delayed_messages: Default::default(),
        endpoint_exts,
    })
}

fn init_neighborhood(
    connector_id: ConnectorId,
    logger: &mut dyn Logger,
    em: &mut EndpointManager,
    deadline: Option<Instant>,
) -> Result<Neighborhood, ConnectError> {
    use {ConnectError::*, Msg::SetupMsg as S, SetupMsg::*};
    ////////////////////////////////
    #[derive(Debug)]
    struct WaveState {
        parent: Option<usize>,
        leader: ConnectorId,
    }
    fn do_wave(
        em: &mut EndpointManager,
        awaiting: &mut HashSet<usize>,
        ws: &WaveState,
    ) -> Result<(), ConnectError> {
        awaiting.clear();
        let msg = S(LeaderWave { wave_leader: ws.leader });
        for index in em.index_iter() {
            if Some(index) != ws.parent {
                em.send_to_setup(index, &msg)?;
                awaiting.insert(index);
            }
        }
        Ok(())
    }
    ///////////////////////
    /*
    Conceptually, we have two distinct disstributed algorithms back-to-back
    1. Leader election using echo algorithm with extinction.
        - Each connector initiates a wave tagged with their ID
        - Connectors participate in waves of GREATER ID, abandoning previous waves
        - Only the wave of the connector with GREATEST ID completes, whereupon they are the leader
    2. Tree construction
        - The leader broadcasts their leadership with msg A
        - Upon receiving their first announcement, connectors reply B, and send A to all peers
        - A controller exits once they have received A or B from each neighbor

    The actual implementation is muddier, because non-leaders aren't aware of termiantion of algorithm 1,
    so they rely on receipt of the leader's announcement to realize that algorithm 2 has begun.

    NOTE the distinction between PARENT and LEADER
    */
    log!(logger, "beginning neighborhood construction");
    if em.num_endpoints() == 0 {
        log!(logger, "Edge case of no neighbors! No parent an no children!");
        return Ok(Neighborhood { parent: None, children: VecSet::new(vec![]) });
    }
    log!(logger, "Have {} endpoints. Must participate in distributed alg.", em.num_endpoints());
    let mut awaiting = HashSet::with_capacity(em.num_endpoints());
    // 1+ neighbors. Leader can only be learned by receiving messages
    // loop ends when I know my sink tree parent (implies leader was elected)
    let election_result: WaveState = {
        // initially: No parent, I'm the best leader.
        let mut best_wave = WaveState { parent: None, leader: connector_id };
        // start a wave for this initial state
        do_wave(em, &mut awaiting, &best_wave)?;
        // with 1+ neighbors, progress is only made in response to incoming messages
        em.undelay_all();
        'election: loop {
            log!(logger, "Election loop. awaiting {:?}...", awaiting.iter());
            let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
            log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
            match msg {
                S(LeaderAnnounce { tree_leader }) => {
                    let election_result =
                        WaveState { leader: tree_leader, parent: Some(recv_index) };
                    log!(logger, "Election lost! Result {:?}", &election_result);
                    assert!(election_result.leader >= best_wave.leader);
                    assert_ne!(election_result.leader, connector_id);
                    break 'election election_result;
                }
                S(LeaderWave { wave_leader }) => {
                    use Ordering as O;
                    match wave_leader.cmp(&best_wave.leader) {
                        O::Less => log!(
                            logger,
                            "Ignoring wave with Id {:?}<{:?}",
                            wave_leader,
                            best_wave.leader
                        ),
                        O::Greater => {
                            log!(
                                logger,
                                "Joining wave with Id {:?}>{:?}",
                                wave_leader,
                                best_wave.leader
                            );
                            best_wave = WaveState { leader: wave_leader, parent: Some(recv_index) };
                            log!(logger, "New wave state {:?}", &best_wave);
                            do_wave(em, &mut awaiting, &best_wave)?;
                            if awaiting.is_empty() {
                                log!(logger, "Special case! Only neighbor is parent. Replying to {:?} msg {:?}", recv_index, &msg);
                                em.send_to_setup(recv_index, &msg)?;
                            }
                        }
                        O::Equal => {
                            assert!(awaiting.remove(&recv_index));
                            log!(
                                logger,
                                "Wave reply from index {:?} for leader {:?}. Now awaiting {} replies",
                                recv_index,
                                best_wave.leader,
                                awaiting.len()
                            );
                            if awaiting.is_empty() {
                                if let Some(parent) = best_wave.parent {
                                    log!(
                                        logger,
                                        "Sub-wave done! replying to parent {:?} msg {:?}",
                                        parent,
                                        &msg
                                    );
                                    em.send_to_setup(parent, &msg)?;
                                } else {
                                    let election_result: WaveState = best_wave;
                                    log!(logger, "Election won! Result {:?}", &election_result);
                                    break 'election election_result;
                                }
                            }
                        }
                    }
                }
                S(YouAreMyParent) | S(MyPortInfo(_)) => unreachable!(),
                comm_msg @ Msg::CommMsg { .. } => {
                    log!(logger, "delaying msg {:?} during election algorithm", comm_msg);
                    em.delayed_messages.push((recv_index, comm_msg));
                }
            }
        }
    };

    // starting algorithm 2. Send a message to every neighbor
    log!(logger, "Starting tree construction. Step 1: send one msg per neighbor");
    awaiting.clear();
    for index in em.index_iter() {
        if Some(index) == election_result.parent {
            em.send_to_setup(index, &S(YouAreMyParent))?;
        } else {
            awaiting.insert(index);
            em.send_to_setup(index, &S(LeaderAnnounce { tree_leader: election_result.leader }))?;
        }
    }
    let mut children = vec![];
    em.undelay_all();
    while !awaiting.is_empty() {
        log!(logger, "Tree construction_loop loop. awaiting {:?}...", awaiting.iter());
        let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
        log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
        match msg {
            S(LeaderWave { .. }) => { /* old message */ }
            S(LeaderAnnounce { .. }) => {
                // not a child
                log!(
                    logger,
                    "Got reply from non-child index {:?}. Children: {:?}",
                    recv_index,
                    children.iter()
                );
                if !awaiting.remove(&recv_index) {
                    return Err(SetupAlgMisbehavior);
                }
            }
            S(YouAreMyParent) => {
                if !awaiting.remove(&recv_index) {
                    log!(
                        logger,
                        "Got reply from child index {:?}. Children before... {:?}",
                        recv_index,
                        children.iter()
                    );
                    return Err(SetupAlgMisbehavior);
                }
                children.push(recv_index);
            }
            S(MyPortInfo(_)) => unreachable!(),
            comm_msg @ Msg::CommMsg { .. } => {
                log!(logger, "delaying msg {:?} during election algorithm", comm_msg);
                em.delayed_messages.push((recv_index, comm_msg));
            }
        }
    }
    children.shrink_to_fit();
    let neighborhood =
        Neighborhood { parent: election_result.parent, children: VecSet::new(children) };
    log!(logger, "Neighborhood constructed {:?}", &neighborhood);
    Ok(neighborhood)
}