Files @ 6bcb69712a0e
Branch filter:

Location: EI/VirtualLeaf/src/TutorialCode/Tutorial5/tutorial5.cpp - annotation

Roeland Merks
In response to referee's comment:

"However, (although it is probably not important for model developers), I was
still unable to load the model ‘Meinhardt 1976 with growth’ example from the
‘Models’ drop down menu, I got the ‘Fatal error’ message ‘stepwise underflow in

rkqs, with h=0.000000 and htry = 0.100000’. The model did work when I selected
the Meinhardt model in both the Models and the File -> Read leaf menus together,
it would be preferable if the models loaded from the Models menu worked

automatically. I am not sure that the update referred to in the author’s
response permits the loading of ‘My First Model in Virtual Leaf’ from the
‘Models’ drop down menu; I only got a cell that wiggled."

I made the following changes:

- meinhardt_plugin now reads "meinhardt_init.xml" by default
- changed the name of 'My First Model in Virtual Leaf’ to '0: Empty model template (does nothing)' to make it clear that the wiggle cell is the intended behavior for this model example.
- Added default parameter files for Tutorial1A-D and Tutorial2 to prevent variable behavior depending on the last parameter settings used.


--
user: Roeland Merks <roeland.merks@cwi.nl>
branch 'default'
added data/leaves/tutorial1_init.xml
added data/leaves/tutorial2_init.xml
changed data/leaves/auxin_growth.xml
changed data/leaves/meinhardt_init.xml
changed src/TutorialCode/Tutorial0/tutorial0.cpp
changed src/TutorialCode/Tutorial1A/tutorial1A.h
changed src/TutorialCode/Tutorial1B/tutorial1B.h
changed src/TutorialCode/Tutorial1C/tutorial1C.h
changed src/TutorialCode/Tutorial1D/tutorial1D.h
changed src/TutorialCode/Tutorial2/tutorial2.h
changed src/build_models/meinhardtplugin.h
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
21afbd2a2c01
/*
 *
 *  This file is part of the Virtual Leaf.
 *
 *  The Virtual Leaf is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  The Virtual Leaf is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Copyright 2010 Roeland Merks.
 *
 */

#include "vleafmodel.h"
#include "tutorial5.h"
		   
static const std::string _module_id("$Id$");

QString Tutorial5::ModelID(void) {
  // specify the name of your model here
  return QString( "5: Auxin-driven growth" );
}

// return the number of chemicals your model uses
int Tutorial5::NChem(void) { return 2; }

// To be executed after cell division
void Tutorial5::OnDivide(ParentInfo *parent_info, CellBase *daughter1, CellBase *daughter2) {

	// After divisions, parent and daughter cells get a standard stock of PINs.
	daughter1->SetChemical(1, par->initval[1]);
	daughter2->SetChemical(1, par->initval[1]);
	
	daughter1->SetTransporters(1, 0.);
	daughter2->SetTransporters(1, 0.);

	
}

void Tutorial5::SetCellColor(CellBase *c, QColor *color) { 
  // add cell coloring rules here
	// Red: PIN1
	// Green: Auxin
	color->setRgb(c->Chemical(1)/(1+c->Chemical(1)) * 255.,(c->Chemical(0)/(1+c->Chemical(0)) * 255.), 0);
	
}

void Tutorial5::CellHouseKeeping(CellBase *c) {
  // add cell behavioral rules here
	
	c->EnlargeTargetArea(c->Chemical(0)/(1.+c->Chemical(0))*par->cell_expansion_rate);
	
	if (c->Area() > par->rel_cell_div_threshold * c->BaseArea()) {
		c->Divide();
	}
}

void Tutorial5::CelltoCellTransport(Wall *w, double *dchem_c1, double *dchem_c2) {
  // add biochemical transport rules here
	double phi = w->Length() * par->D[0] * ( w->C2()->Chemical(0) - w->C1()->Chemical(0) );
	dchem_c1[0]+=phi;
	dchem_c2[0]-=phi;
	
	// Active fluxes (PIN1 mediated transport)
	
    // (Transporters measured in moles, here)
    // efflux from cell 1 to cell 2
    double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)) );
	
    // efflux from cell 2 to cell 1
    double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)) );
    
    dchem_c1[0] += trans21 - trans12;
    dchem_c2[0] += trans12 - trans21;
	
	// Influx at leaf "AuxinSource" (as specified in initial condition)
	if (w->AuxinSource()) {
		double aux_flux = par->leaf_tip_source * w->Length(); 
		dchem_c1[0] += aux_flux;
		dchem_c2[0] += aux_flux;
	}
}

double Tutorial5::PINflux(CellBase *this_cell, CellBase *adjacent_cell, Wall *w) {
	// PIN1 localization at wall
    // Note: chemical 0 is Auxin (intracellular storage only)
    //  PIN1 is Chemical 1 (both in walls and intracellular storage)
    //! \f$ \frac{d Pij/dt}{dt} = k_1 A_j \frac{P_i}{L_ij} - k_2 P_{ij} \f$
    // Note that Pij is measured in term of concentration (mol/L)
    // Pi in terms of quantity (mol)
	
	// Equations as in Merks et al., Trends in Plant Science 2007
    
    // calculate PIN translocation rate from cell to membrane
	double adj_auxin =  adjacent_cell->Chemical(0);
    double receptor_level = adj_auxin * par->r / (par->kr + adj_auxin);
	double pin_atwall; // pick the correct side of the Wall
	
	if (w->C1() == this_cell) pin_atwall = w->Transporters1(1); 
	else pin_atwall=w->Transporters2(1);
	
	// note: pin_flux is net flux from endosome to wall
	double pin_flux = par->k1 * this_cell->Chemical(1) * receptor_level / ( par->km + this_cell->Chemical(1) ) - par->k2 * pin_atwall;
	return pin_flux;


}


void Tutorial5::WallDynamics(Wall *w, double *dw1, double *dw2) {
  // add biochemical networks for reactions occuring at walls here
    dw1[0] = 0.; dw2[0] = 0.; // chemical 0 unused in walls
	dw1[1] = PINflux(w->C1(),w->C2(),w);
    dw2[1] = PINflux(w->C2(),w->C1(),w);
		
}

void Tutorial5::CellDynamics(CellBase *c, double *dchem) { 
	// add biochemical networks for intracellular reactions here
	
	// sum all incoming fluxes of PINs
	dchem[1] =  - SumFluxFromWalls( c, Tutorial5::PINflux );
	
	// auxin degradation
	dchem[0] = - par->aux_breakdown * c->Chemical(0); 
	
	
}


Q_EXPORT_PLUGIN2(tutorial5, Tutorial5)