Changeset - 092543adb6c7
[Not reviewed]
tip default
1 0 1
Michael Guravage - 9 years ago 2016-01-11 15:37:05
michael.guravage@cwi.nl
Moved README to README.md.
1 file changed with 78 insertions and 0 deletions:
0 comments (0 inline, 0 general)
README.md
Show inline comments
 
file renamed from README to README.md
 
Overview
 
========
 

	
 
VirtualLeaf is a cell-based computer-modeling framework for plant
 
tissue morphogenesis. The current version defines a set of
 
biologically-intuitive C++ objects, including cells, cell walls, and
 
diffusing and reacting chemicals, that provide useful abstractions for
 
building biological simulations of developmental
 
processes. VirtualLeaf?-based models provide a means for plant
 
researchers to analyze the function of developmental genes in the
 
context of the biophysics of growth and patterning. The VirtualLeaf?
 
runs on Windows, Mac and Linux.
 

	
 

	
 
Papers on VirtualLeaf
 
---------------------
 

	
 
If you use VirtualLeaf in your work, please cite our paper [Merks,
 
R. M. H., Guravage, M., Inzé, D., & Beemster,
 
G. T. S. (2011). VirtualLeaf: An Open-Source Framework for Cell-Based
 
Modeling of Plant Tissue Growth and Development. Plant Phys., 155(2),
 
656–666](http://www.plantphysiol.org/cgi/content/short/pp.110.167619?keytype=ref&ijkey=YTmfxrHG5QCsa8k)
 
(Open Access).
 

	
 
A step-by-step introduction to building models with the VirtualLeaf?,
 
providing basic example models of leaf venation and meristem
 
development, is available in [Merks, R. M. H., & Guravage,
 
M. A. (2012). Building Simulation Models of Developing Plant Organs
 
Using VirtualLeaf. In Methods in Molecular Biology (Vol. 959,
 
pp. 333–352)](http://link.springer.com/protocol/10.1007%2F978-1-62703-221-6_23),
 
[preprint](http://link.springer.com/protocol/10.1007%2F978-1-62703-221-6_23).
 
A list of problems, issues, and solutions re: this book chapter is
 
maintained on googlecode.
 

	
 
If need assistance in setting up parameter studies for your model,
 
please see our chapter [Palm, M.M., & Merks,
 
R.M.H. (2014). Large-Scale Parameter Studies of Cell-Based Models of
 
Tissue Morphogenesis Using CompuCell3D or VirtualLeaf. In Methods in
 
Molecular Biology (Vol. 1189)](http://www.springer.com/life+sciences/cell+biology/book/978-1-4939-1163-9).
 

	
 

	
 
Papers using VirtualLeaf
 
------------------------
 

	
 
Dirk De Vos, Kris Vissenberg, Jan Broeckhove, Gerrit T. S. Beemster
 
(2014). Putting Theory to the Test: Which Regulatory Mechanisms Can
 
Drive Realistic Growth of a Root? PLoS Computational Biology, 10(10),
 
e1003910. doi:10.1371/journal.pcbi.1003910
 

	
 
De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E.,
 
Novák, O., et al. (2014). Integration of growth and patterning during
 
vascular tissue formation in Arabidopsis. Science (New York, NY),
 
345(6197), 1255215–1255215. doi:10.1126/science.1255215
 

	
 
D. Draelants, D. Avitabile, & W. Vanroose, [Localised auxin peaks in
 
concentration-based transport models for plants](http://arxiv.org/abs/1403.3926)
 
[arXiv:1403.3926].
 

	
 
Van Mourik, S., Kaufmann, K., Van Dijk, A. D. J., Angenent, G. C.,
 
Merks, R. M. H., & Molenaar, J. (2012). Simulation of Organ Patterning
 
on the Floral Meristem Using a Polar Auxin Transport Model. PLoS ONE,
 
7(1), e28762. doi:10.1371/journal.pone.0028762.s018
 

	
 
Wabnik, K., Kleine-Vehn, J., Balla, J., Sauer, M., Naramoto, S.,
 
Reinöhl, V., et al. (2010). Emergence of tissue polarization from
 
synergy of intracellular and extracellular auxin signaling. Molecular
 
Systems Biology, 6, 447. doi:10.1038/msb.2010.103
 

	
 
R M H Merks, Van de Peer, Y., Inzé, D., & Beemster,
 
G. T. S. (2007). Canalization without flux sensors: a traveling-wave
 
hypothesis. Trends in Plant Science, 12(9),
 
384–390. doi:10.1016/j.tplants.2007.08.004
 

	
 

	
 
Downloads
 
---------
 

	
 
[Download the VirtualLeaf](https://drive.google.com/folderview?id=0B4SMVyYUsosrbVY3LTRXUHd5WWs&usp=sharing).
0 comments (0 inline, 0 general)