Files
@ 9a40ab737a73
Branch filter:
Location: EI/VirtualLeaf/src/cell.cpp
9a40ab737a73
47.4 KiB
text/x-c++src
* Added functionality for numerical output (CSV) format. See functions starting with "CSV" in mesh.cpp. External code hull.cpp is responsible for convex hull calculations.
- ToDo: adopt menu item "File->export cell areas" so user can choose a file name or set up periodic output of numerical data.
- ToDo: add parameters re: periodic numeric output to "<settings>" block of LeafML-file, so it becomes possible to set up numeric output interactively, then write the LeafML file and run the program in batch mode to retrieve periodic numeric output.
* Added new functionality to plugin interface. It becomes possible to define a default LeafML init file for a plugin. It is read whenever the model plugin is loaded.
- ToDo: define default LeafML files for all plugins, according to the LeafML files mentioned in the Plant Phys. tutorial.
user: Roeland Merks <merks@cwi.nl>
branch 'default'
added src/hull.cpp
added src/hull.h
changed src/TutorialCode/Tutorial0/tutorial0.pro
changed src/VirtualLeaf.cpp
changed src/VirtualLeaf.pro
changed src/build_models/auxingrowthplugin.cpp
changed src/build_models/auxingrowthplugin.h
changed src/canvas.cpp
changed src/canvas.h
changed src/mainbase.h
changed src/mesh.cpp
changed src/mesh.h
changed src/modelcatalogue.cpp
changed src/simplugin.cpp
changed src/simplugin.h
changed src/xmlwrite.cpp
- ToDo: adopt menu item "File->export cell areas" so user can choose a file name or set up periodic output of numerical data.
- ToDo: add parameters re: periodic numeric output to "<settings>" block of LeafML-file, so it becomes possible to set up numeric output interactively, then write the LeafML file and run the program in batch mode to retrieve periodic numeric output.
* Added new functionality to plugin interface. It becomes possible to define a default LeafML init file for a plugin. It is read whenever the model plugin is loaded.
- ToDo: define default LeafML files for all plugins, according to the LeafML files mentioned in the Plant Phys. tutorial.
user: Roeland Merks <merks@cwi.nl>
branch 'default'
added src/hull.cpp
added src/hull.h
changed src/TutorialCode/Tutorial0/tutorial0.pro
changed src/VirtualLeaf.cpp
changed src/VirtualLeaf.pro
changed src/build_models/auxingrowthplugin.cpp
changed src/build_models/auxingrowthplugin.h
changed src/canvas.cpp
changed src/canvas.h
changed src/mainbase.h
changed src/mesh.cpp
changed src/mesh.h
changed src/modelcatalogue.cpp
changed src/simplugin.cpp
changed src/simplugin.h
changed src/xmlwrite.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 | /*
*
* This file is part of the Virtual Leaf.
*
* The Virtual Leaf is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* The Virtual Leaf is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Virtual Leaf. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright 2010 Roeland Merks.
*
*/
#include <QDebug>
#include <string>
#include "cell.h"
#include "node.h"
#include "mesh.h"
#include "tiny.h"
#include "nodeset.h"
#include "cellitem.h"
#include "nodeitem.h"
#include "qcanvasarrow.h"
#include "parameter.h"
static const std::string _module_id("$Id$");
extern Parameter par;
double Cell::factor=1.;
double Cell::offset[3]={0,0,0};
Cell::Cell(void) : CellBase()
{
m=0;
}
Cell::Cell(double x, double y, double z) : CellBase(x,y,z)
{
m=0;
}
Cell::Cell(const Cell &src) : CellBase(src)
{
m=src.m;
}
bool Cell::Cmp(Cell *c) const { return this->Index() < c->Index(); }
bool Cell::Eq(Cell *c) const { return this->Index() == c->Index(); }
Cell Cell::operator=(const Cell &src)
{
CellBase::operator=(src);
m=src.m;
return *this;
}
//Cell(void) : CellBase() {}
void Cell::DivideOverAxis(Vector axis)
{
// Build a wall
// -> find the position of the wall
// better look for intersection with a simple line intersection algorithm as below?
// this leads to some exceptions: e.g. dividing a horizontal rectangle.
// leaving it like this for the time being
if (dead) return;
Vector centroid=Centroid();
double prev_cross_z=(axis * (centroid - *(nodes.back()) ) ).z ;
ItList new_node_locations;
for (list<Node *>::iterator i=nodes.begin(); i!=nodes.end(); i++) {
// cross product to detect position of division
Vector cross = axis * (centroid - *(*i));
if (cross.z * prev_cross_z < 0 ) {
new_node_locations.push_back(i);
}
prev_cross_z=cross.z;
}
DivideWalls(new_node_locations, centroid, centroid+axis);
}
double Cell::MeanArea(void)
{
return m->MeanArea();
}
void Cell::Apoptose(void)
{
// First kill walls
#ifdef QDEBUG
qDebug() << "This is cell " << Index() << endl;
qDebug() << "Number of walls: " << walls.size() << endl;
#endif
for (list<Wall *>::iterator w=walls.begin(); w!=walls.end(); w++) {
#ifdef QDEBUG
qDebug() << "Before apoptosis, wall " << (*w)->Index() << " says: c1 = "
<< (*w)->c1->Index() << ", c2 = " << (*w)->c2->Index() << endl;
#endif
}
for (list<Wall *>::iterator w=walls.begin(); w!=walls.end(); w++) {
bool illegal_flag = false;
if ((*w)->c1 == (*w)->c2 )
illegal_flag=true;
if ((*w)->c1 == this) {
// invert wall?
(*w)->c1 = (*w)->c2;
(*w)->c2 = m->boundary_polygon;
Node *n1 = (*w)->n1;
(*w)->n1 = (*w)->n2;
(*w)->n2 = n1;
} else {
(*w)->c2 = m->boundary_polygon;
}
#ifdef QDEBUG
if (illegal_flag && (*w)->c1==(*w)->c2) {
qDebug() << "I created an illegal wall." << endl;
}
#endif
if ( ((*w)->N1()->DeadP() || (*w)->N2()->DeadP()) ||
((*w)->C1() == (*w)->C2() ) ){
// kill wall
#ifdef QDEBUG
qDebug() << "Killing wall." << endl;
#endif
(*w)->Kill();
#ifdef QDEBUG
if ((*w)) {
qDebug() << "Wall " << (*w)->Index() << " says: c1 = "
<< (*w)->c1->Index() << ", c2 = " << (*w)->c2->Index() << endl;
}
#endif
(*w)=0;
} else {
#ifdef QDEBUG
qDebug() << "Not killing wall." << endl;
qDebug() << "Wall " << (*w)->Index() << " says: c1 = "
<< (*w)->c1->Index() << ", c2 = " << (*w)->c2->Index() << endl;
#endif
}
}
walls.remove(0);
// Unregister me from my nodes, and delete the node if it no longer belongs to any cells
list<Node *> superfluous_nodes;
for (list<Node *>::iterator n=nodes.begin(); n!=nodes.end(); n++) {
Node &no(*(*n));
// locate myself in the node's owner list
list<Neighbor>::iterator cellpos;
bool cell_found=false;
for (list<Neighbor>::iterator nb=no.owners.begin(); nb!=no.owners.end(); nb++) {
if (nb->cell == this) {
cellpos = nb;
cell_found = true;
break;
}
}
if (!cell_found) {
// I think this cannot happen; but if I am wrong, unpredictable things would happen. So throw an exception.
throw ("Cell not found in CellBase::Apoptose()\n\rPlease correct the code to handle this situation.");
}
Neighbor tmp = *cellpos;
no.owners.erase(cellpos);
// if node has no owners left, or only has a connection to special cell -1 (outside world), mark it as dead.
if (no.owners.size()==0 || (no.owners.size()==1 && no.owners.front().cell->BoundaryPolP()) ) {
no.MarkDead();
} else {
// register node with outside world
if (find_if( no.owners.begin(), no.owners.end(),
bind2nd ( mem_fun_ref(&Neighbor::CellEquals), m->boundary_polygon->Index() ) ) == no.owners.end() ) {
tmp.cell = m->boundary_polygon;
no.owners.push_back(tmp);
}
}
}
// mark cell as dead
MarkDead();
}
void Cell::ConstructConnections(void)
{
// Tie up the nodes of this cell, assuming they are correctly ordered
//cerr << "Constructing connections of cell " << index << endl;
for (list<Node *>::iterator i=nodes.begin(); i!=nodes.end(); i++) {
//cerr << "Connecting node " << *i << endl;
//cerr << "Node " << *i << endl << " = " << *(*i) << endl;
// 1. Tidy up existing connections (which are part of this cell)
if ((*i)->owners.size()>0) {
list<Neighbor>::iterator neighb_with_this_cell=
// remove myself from the neighbor list of the node
find_if((*i)->owners.begin(),
(*i)->owners.end(),
bind2nd(mem_fun_ref( &Neighbor::CellEquals ),this->Index() ) );
if (neighb_with_this_cell!=(*i)->owners.end())
(*i)->owners.erase(neighb_with_this_cell);
}
Node *previous;
if (i!=nodes.begin()) {
list<Node *>::iterator previous_iterator=i;
previous_iterator--;
previous=*previous_iterator;
} else {
previous=nodes.back();
}
Node *next;
list<Node *>::iterator next_iterator=i;
next_iterator++;
if (next_iterator==nodes.end()) {
next=nodes.front();
} else {
next=*next_iterator;
}
(*i)->owners.push_back( Neighbor( this, previous, next ) );
}
}
bool Cell::DivideOverGivenLine(const Vector v1, const Vector v2, bool fix_cellwall, NodeSet *node_set )
{
if (dead) return false;
// check each edge for intersection with the line
ItList new_node_locations;
#ifdef QDEBUG
qDebug() << "Cell " << Index() << " is doing DivideOverGivenLine" << endl;
#endif
for (list<Node *>::iterator i=nodes.begin(); i!=nodes.end(); i++) {
Vector v3 = *(*i);
list<Node *>::iterator nb=i;
nb++;
if (nb == nodes.end()) {
nb = nodes.begin();
}
Vector v4 = *(*nb);
double denominator =
(v4.y - v3.y)*(v2.x - v1.x) - (v4.x - v3.x)*(v2.y - v1.y);
double ua =
((v4.x - v3.x)*(v1.y - v3.y) - (v4.y - v3.y)*(v1.x -v3.x))/denominator;
double ub =
((v2.x - v1.x)*(v1.y-v3.y) - (v2.y- v1.y)*(v1.x - v3.x))/denominator;
//cerr << "Edge " << *i << " to " << *nb << ": ua = " << ua << ", ub = " << ub << ": ";
// this construction with "TINY" should simulate open/closed interval <0,1]
if ( ( TINY < ua && ua < 1.+TINY ) && ( TINY < ub && ub < 1.+TINY ) ) {
// yes, intersection detected. Push the location to the list of iterators
new_node_locations.push_back(nb);
}
}
#ifdef QDEBUG
if (new_node_locations.size()<2) {
qDebug() << "Line does not intersect with two edges of Cell " << Index() << endl;
qDebug() << "new_node_locations.size() = " << new_node_locations.size() << endl;
return false;
}
ItList::iterator i = new_node_locations.begin();
list< Node *>::iterator j;
qDebug() << "-------------------------------" << endl;
qDebug() << "Location of new nodes: " << (**i)->Index() << " and ";
++i;
j = *i;
if (j==nodes.begin()) j=nodes.end(); j--;
qDebug() << (*j)->Index() << endl;
qDebug() << "-------------------------------" << endl;
if ( **new_node_locations.begin() == *j ) {
qDebug() << "Rejecting proposed division (cutting off zero area)." << endl;
return false;
}
#endif
DivideWalls(new_node_locations, v1, v2, fix_cellwall, node_set);
return true;
}
// Core division procedure
void Cell::DivideWalls(ItList new_node_locations, const Vector from, const Vector to, bool fix_cellwall, NodeSet *node_set)
{
if (dead) return;
bool boundary_touched_flag=false;
// Step 0: keep some data about the parent before dividing
ParentInfo parent_info;
parent_info.polarization = ReduceCellAndWalls<Vector>( PINdir );
parent_info.polarization.Normalise();
parent_info.PINmembrane = SumTransporters(1);
parent_info.PINendosome = Chemical(1);
//cerr << "Parent polarization before division: " << parent_info.polarization << endl;
// Step 1: create a daughter cell
Cell *daughter=m->AddCell(new Cell());
// Step 2: Copy the basics of parent cell to daughter
for (int i=0;i<NChem();i++) {
daughter->chem[i]=chem[i];
}
daughter->cell_type = cell_type;
for (int i=0;i<NChem();i++) {
daughter->new_chem[i]=new_chem[i];
}
daughter->boundary=boundary;
daughter->m=m;
daughter->target_area=target_area/2.;
target_area/=2;
daughter->cellvec=cellvec;
// Division currently only works for convex cells: i.e. if the division line
// intersects the cells at two points only.
if (new_node_locations.size()!=2) {
// Note: if you would add the possibility of dividing non-convex
// cells, remember to update the code below. There are some
// fixed-size arrays over there!
cerr << "Warning in Cell::Division: division of non-convex cells not fully implemented" << endl;
// Reject the daughter cell and decrement the amount of cells
// again. We can do this here because it is the last cell added.
// Never, ever try to fully erase a cell elsewhere, because we
// make heavy use of cell indices in this project; if you erase a
// Cell somewhere in the middle of Mesh::Cells the indices will
// get totally messed up...! (e.g. the indices used in Nodes::cells)
#ifdef QDEBUG
qDebug() << "new_node_locations.size() = " << new_node_locations.size() <<endl;
qDebug() << "daughter->index = " << daughter->index << endl;
qDebug() << "cells.size() = " << m->cells.size() << endl;
#endif
m->cells.pop_back();
Cell::NCells()--;
m->shuffled_cells.pop_back();
return;
}
// We can be sure we only need two positions here because divisions
// of non-convex cells are rejected above.
Vector new_node[2];
Node *new_node_ind[2];
int new_node_flag[2];
Edge div_edges[2];
int nnc=0;
Wall *div_wall[4];
double orig_length[2];
for (int i=0;i<4;i++) { div_wall[i]=0; orig_length[i/2] = 0.; }
// construct new Nodes at the intersection points
// unless they coincide with existing points
for ( ItList::const_iterator i=new_node_locations.begin(); i!=new_node_locations.end(); i++) {
// intersection between division axis
// and line from this node to its predecessor
// method used: http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
Vector v1 = from;
Vector v2 = to;
Vector v3 = *(**i);
// get previous node
list<Node *>::iterator nb=*i;
if (nb == nodes.begin()) {
nb = nodes.end();
}
nb--;
Vector v4=*( *nb );
double denominator =
(v4.y - v3.y)*(v2.x - v1.x) - (v4.x - v3.x)*(v2.y - v1.y);
double ua =
((v4.x - v3.x)*(v1.y - v3.y) - (v4.y - v3.y)*(v1.x -v3.x))/denominator;
double intersec_x = v1.x + ua*(v2.x-v1.x);
double intersec_y = v1.y + ua*(v2.y-v1.y);
// construct a new node at intersec
// we construct a vector temporarily,
// until we are sure we are going to keep the node...
// Node count is damaged if we construct superfluous nodes
Vector *n=new Vector(intersec_x,intersec_y,0);
div_edges[nnc].first=*nb;
div_edges[nnc].second=**i;
// Insert this new Node if it is far enough (5% of element length)
// from one of the two existing nodes, else use existing node
//
// old, fixed value was: par.collapse_node_threshold = 0.05
double collapse_node_threshold = 0.05;
#ifdef FLEMING
collapse_node_threshold = par.collapse_node_threshold;
#endif
double elem_length = ( (*(**i)) - (*(*nb)) ).Norm();
if ( ( *(**i) - *n ).Norm() < collapse_node_threshold * elem_length ) {
new_node_flag[nnc]=1;
new_node[nnc] = *(**i);
new_node_ind[nnc] = **i;
//cerr << **i << endl ;
} else
if ( (*(*nb) - *n).Norm() < collapse_node_threshold * elem_length ) {
new_node_flag[nnc]=2;
new_node[nnc] = *(*nb);
new_node_ind[nnc] = *nb;
} else {
new_node_flag[nnc]=0;
new_node[nnc] = *n;
}
nnc++;
delete n;
}
for (int i=0;i<2;i++) {
Cell *neighbor_cell=0; // we need this to split up the "Wall" objects.
// for both divided edges:
// insert its new node into all cells that own the divided edge
// but only if it really is a new node:
if (new_node_flag[i]!=0) {
if (fix_cellwall) {
(new_node_ind[i])->fixed = true;
// all this we'll do later for the node set :-)
/* (new_node_ind[i])->boundary = true;
(new_node_ind[i])->sam = true;
boundary = SAM;
daughter->boundary = SAM;
boundary_touched_flag = true;
*/
}
} else {
// (Construct a list of all owners:)
// really construct the new node (if this is a new node)
new_node_ind[i] =
m->AddNode(new Node (new_node[i]) );
// if a new node is inserted into a fixed edge (i.e. in the petiole)
// make the new node fixed as well
(new_node_ind[i])->fixed = (div_edges[i].first)->fixed &&
(div_edges[i].second)->fixed;
// Insert Node into NodeSet if the div_edge is part of it.
if (
(div_edges[i].first->node_set && div_edges[i].second->node_set) &&
(div_edges[i].first->node_set == div_edges[i].second->node_set))
{
//cerr << "Inserting node into node set\n";
div_edges[i].first->node_set->AddNode( new_node_ind[i] );
}
// if the new wall should be fixed (i.e. immobile, or moving as
// solid body), make it so, and make it part of the boundary. Using
// this to make a nice initial condition by cutting off part of a
// growing leaf.
if (fix_cellwall) {
(new_node_ind[i])->fixed = true;
// All this we'll do later for the node set only
}
// if new node is inserted into the boundary
// it will be part of the boundary, too
new_node_ind[i]->UnsetBoundary();
if ((div_edges[i].first->BoundaryP() && div_edges[i].second->BoundaryP()) && // Both edge nodes are boundary nodes AND
((m->findNextBoundaryNode(div_edges[i].first))->Index() == div_edges[i].second->Index())){ // The boundary proceeds from first to second.
#ifdef QDEBUG
qDebug() << "Index of the first node: " << div_edges[i].first->Index() << endl;
qDebug() << "Index of the second node: " << div_edges[i].second->Index() << endl;
qDebug() << "Boundary proceeds from: " << div_edges[i].first->Index()
<< "to: " << (m->findNextBoundaryNode(div_edges[i].first))->Index() << endl << endl;
#endif
new_node_ind[i]->SetBoundary();
// We will need to repair the boundary polygon later, since we will insert new nodes
//cerr << "Boundary touched for Node " << new_node_ind[i]->Index() << "\n";
boundary_touched_flag=true;
// and insert it into the boundary_polygon
// find the position of the first node in the boundary
list<Node *>::iterator ins_pos = find
(m->boundary_polygon->nodes.begin(),
m->boundary_polygon->nodes.end(),
div_edges[i].first);
// ... second node comes before or after it ...
if (*(++ins_pos!=m->boundary_polygon->nodes.end()?
ins_pos:m->boundary_polygon->nodes.begin())!=div_edges[i].second) {
m->boundary_polygon->nodes.insert(((ins_pos--)!=m->boundary_polygon->nodes.begin()?ins_pos:(--m->boundary_polygon->nodes.end())), new_node_ind[i]);
// .. set the neighbors of the new node ...
// in this case e.second and e.first are inverted
} else {
// insert before second node, so leave ins_pos as it is,
// that is: incremented
m->boundary_polygon->nodes.insert(ins_pos, new_node_ind[i]);
// .. set the neighbors of the new node ...
}
}
list<Neighbor> owners;
// push all cells owning the two nodes of the divides edges
// onto a list
copy((div_edges[i].first)->owners.begin(),
(div_edges[i].first)->owners.end(),
back_inserter(owners));
copy((div_edges[i].second)->owners.begin(),
(div_edges[i].second)->owners.end(),
back_inserter(owners));
// find first non-self duplicate in the owners:
// cells owning the same two nodes
// share an edge with me
owners.sort( mem_fun_ref( &Neighbor::Cmp ) );
#ifdef QDEBUG
list<Neighbor> unique_owners;
copy(owners.begin(), owners.end(), back_inserter(unique_owners));
unique_owners.unique( mem_fun_ref( &Neighbor::Eq ) );
qDebug() << "The dividing edge nodes: " << div_edges[i].first->Index()
<< " and " << div_edges[i].second->Index() << " are owned by cells: ";
// spit out each owners' cell index
foreach(Neighbor neighbor, unique_owners){
qDebug() << neighbor.cell->Index() << " ";
}
qDebug() << endl;
#endif
// Search through the sorted list of edge node owners looking for duplicate pairs. Each pair represents an actual edge owner.
list<Neighbor> edge_owners;
list<Neighbor>::iterator it;
for (it=owners.begin(); it!=owners.end(); it++) {
it = adjacent_find(it, owners.end(), neighbor_cell_eq);
if (it == owners.end()) break; // bail if reach the end of the list
#ifdef QDEBUG
qDebug() << "Considering: " << it->cell->Index() << " as a possible edge owner." << endl;
#endif
if (it->cell->Index() != this->Index()) {
#ifdef QDEBUG
qDebug() << "Adding: " << it->cell->Index() << " to the list of edge owners." << endl;
#endif
edge_owners.push_back(*it);
}
}
if (edge_owners.size() > 1){
// Remove the boundary polygon - if its there
list<Neighbor>::iterator it;
if ((it = find_if (edge_owners.begin(), edge_owners.end(), bind2nd(mem_fun_ref(&Neighbor::CellEquals), -1)))
!= edge_owners.end()) {
#ifdef QDEBUG
qDebug() << "deleating: " << it->cell->Index() << " from the list of edge owners." << endl;
#endif
edge_owners.erase(it);
}
}
#ifdef QDEBUG
qDebug() << "The edge owners list has: " << edge_owners.size() << " elements" << endl;
#endif
// Since the list should always contain exactly one element, pass it on as an iterator
list<Neighbor>::iterator c = (edge_owners.size() != 0) ? edge_owners.begin() : edge_owners.end();
// (can we have more than one neighboring cell here??)
if (c!=owners.end()) {
neighbor_cell = c->cell;
if (!c->cell->BoundaryPolP()) {
// find correct position in the cells node list
// to insert the new node
list<Node *>::iterator ins_pos = find
(neighbor_cell->nodes.begin(),
neighbor_cell->nodes.end(),
div_edges[i].first);
neighbor_cell->nodes.insert(ins_pos, new_node_ind[i]);
neighbor_cell->ConstructConnections();
// give walls to daughter later
}
} else {
neighbor_cell = 0;
}
}
// Split the Wall with the neighboring cell
// if the neighbor cell has not yet been identified above, do it now
if (neighbor_cell == 0) {
list<Neighbor> owners;
// push all cells owning the two nodes of the divides edges
// onto a list
copy((div_edges[i].first)->owners.begin(),
(div_edges[i].first)->owners.end(),
back_inserter(owners));
copy((div_edges[i].second)->owners.begin(),
(div_edges[i].second)->owners.end(),
back_inserter(owners));
// find first non-self duplicate in the owners:
// cells owning the same two nodes
// share an edge with me
owners.sort( mem_fun_ref( &Neighbor::Cmp ) );
list<Neighbor>::iterator c;
for (c=owners.begin(); c!=owners.end(); c++) {
c=adjacent_find(c,owners.end(),neighbor_cell_eq);
if (c->cell->Index() != this->Index() || c==owners.end()) break;
}
if (c!=owners.end())
neighbor_cell = c->cell;
else
neighbor_cell = 0;
}
if (neighbor_cell /* && !neighbor_cell->BoundaryPolP() */) {
//cerr << "Cell " << index << " says: neighboring cell is " << neighbor_cell->index << endl;
/*************** 1. Find the correct wall element ********************/
list<Wall *>::iterator w, start_search;
w = start_search = walls.begin();
do {
// Find wall between this cell and neighbor cell
w = find_if( start_search, walls.end(), bind2nd (mem_fun( &Wall::is_wall_of_cell_p ), neighbor_cell ) );
start_search = w; start_search++; // continue searching at next element
} while ( w!=walls.end() && !(*w)->IntersectsWithDivisionPlaneP( from, to ) ); // go on until we find the right one.
if (w == walls.end()) {
#ifdef QDEBUG
qDebug() << "Whoops, wall element not found...!" << endl;
qDebug() << "Cell ID: " << neighbor_cell->Index() << endl;
qDebug() << "My cell ID: " << Index() << endl;
#endif
} else {
// 2. Split it up, if we should (sometimes, the new node coincides with an existing node so
// we should not split up the Wall)
if (new_node_ind[i]!=(*w)->n1 && new_node_ind[i]!=(*w)->n2) {
Wall *new_wall;
// keep the length of the original wall; we need it to equally divide the transporter concentrations
// over the two daughter walls
(*w)->SetLength(); // make sure we've got the current length
orig_length[i] = (*w)->Length();
//cerr << "Original length is " << orig_length[i] << endl;
if ((*w)->c1 == this ) {
// cerr << "Cell " << (*w)->c1->Index() << " splits up wall " << *(*w) << ", into: " << endl;
new_wall = new Wall( (*w)->n1, new_node_ind[i], this, neighbor_cell);
(*w)->n1 = new_node_ind[i];
// cerr << "wall " << *(*w) << ", and new wall " << *new_wall << endl;
} else {
new_wall = new Wall( (*w)->n1, new_node_ind[i], neighbor_cell, this);
(*w)->n1 = new_node_ind[i];
}
// 3. Give wall elements to appropriate cells
if (new_wall->n1 != new_wall->n2) {
if (par.copy_wall)
new_wall->CopyWallContents(**w);
else {
// If wall contents are not copied, decide randomly which wall will be the "parent"
// otherwise we will get biases (to the left), for example in the meristem growth model
if (RANDOM()<0.5) {
new_wall->SwapWallContents(*w);
}
}
AddWall(new_wall);
// cerr << "Building new wall: this=" << Index() << ", neighbor_cell = " << neighbor_cell->Index() << endl;
neighbor_cell->AddWall( new_wall);
//cerr << "Existing wall: c1 = " << (*w)->c1->Index() << ", neighbor_cell = " << (*w)->c2->Index() << endl;
// Remember the addresses of the new walls
div_wall[2*i+0] = *w;
div_wall[2*i+1] = new_wall;
// we will correct the transporter concentrations later in this member function, after division
// First the new nodes should be inserted into the cells, before we can calculate wall lengths
// Remember that cell walls can be bent, so have a bigger length than the Euclidean distance n1->n2
} else {
delete new_wall;
}
}
}
}
} // closing loop over the two divided edges (for (int i=0;i<2;i++) )
// move half of the nodes to the daughter
{
//cerr << "Daughter: ";
list<Node *>::iterator start, stop;
start=new_node_locations.front();
//cerr << "*new_node_locations.front() = " << *new_node_locations.front() << endl;
if (new_node_flag[0]==1) {
start++;
if (start==nodes.end())
start=nodes.begin();
}
stop=new_node_locations.back();
if (new_node_flag[1]==2) {
if (stop==nodes.begin())
stop=nodes.end();
stop--;
}
list<Node *>::iterator i=start;
while ( i!=stop) {
// give the node to the daughter
// (find references to parent cell from this node,
// and remove them)
list<Neighbor>::iterator neighb_with_this_cell=
find_if((*i)->owners.begin(),
(*i)->owners.end(),
bind2nd(mem_fun_ref( &Neighbor::CellEquals ),this->Index() ) );
if (neighb_with_this_cell==(*i)->owners.end()) {
#ifdef QDEBUG
qDebug() << "not found" << endl;
#endif
abort();
}
(*i)->owners.erase(neighb_with_this_cell);
daughter->nodes.push_back( *i );
i++;
if (i==nodes.end())
i=nodes.begin();
};
}
// new node list of parent
list<Node *> new_nodes_parent;
// half of the nodes stay with the parent
{
list<Node *>::iterator start, stop;
start=new_node_locations.back();
if (new_node_flag[1]==1) {
start++;
if (start==nodes.end())
start=nodes.begin();
}
stop=new_node_locations.front();
if (new_node_flag[0]==2) {
if (stop==nodes.begin())
stop=nodes.end();
stop--;
}
list<Node *>::iterator i=start;
while (i!=stop) {
new_nodes_parent.push_back( *i );
i++;
if (i==nodes.end())
i = nodes.begin();
};
}
// insert shared wall
// insert shared nodes on surface of parent cell
new_nodes_parent.push_back( new_node_ind[0] );
daughter->nodes.push_back ( new_node_ind[1] );
// optionally add the new node to the nodeset (passed by pointer)
// (in this way we can move the NodeSet as a whole; useful for a fixed cutting line)
if (node_set) {
node_set->AddNode( new_node_ind[0] );
}
#define MULTIPLE_NODES
#ifdef MULTIPLE_NODES
// intermediate, extra nodes
// Calculate distance between the two new nodes
double dist=( new_node[1] - new_node[0] ).Norm();
//bool fixed_wall = (new_node_ind[0])->fixed && (new_node_ind[1])->fixed;
bool fixed_wall = false;
// Estimate number of extra nodes in wall
// factor 4 is to keep tension on the walls;
// this is a hidden parameter and should be made explicit
// later on.
int n=(int)((dist/Node::target_length)/4+0.5);
Vector nodevec = ( new_node[1]- new_node[0]).Normalised();
double element_length = dist/(double)(n+1);
// note that wall nodes need to run in inverse order in parent
list<Node *>::iterator ins_pos = daughter->nodes.end();
for (int i=1;i<=n;i++) {
Node *node=
m->AddNode( new Node( new_node[0] + i*element_length*nodevec ) );
node->fixed=fixed_wall;
if (!fix_cellwall)
node->boundary = false;
else {
node->fixed = true;
}
ins_pos=daughter->nodes.insert(ins_pos, node );
new_nodes_parent.push_back( node );
// optionally add the new node to the nodeset (passed by pointer)
// (in this way we can move the NodeSet as a whole; useful for a fixed cutting line)
if (node_set) {
node_set->AddNode( node );
}
}
#endif
daughter->nodes.push_back( new_node_ind[0] );
new_nodes_parent.push_back( new_node_ind[1] );
// optionally add the new node to the nodeset (passed by pointer)
// (in this way we can move the NodeSet as a whole; useful for a fixed cutting line)
if (node_set) {
node_set->AddNode( new_node_ind[1] );
}
// move the new nodes to the parent
nodes.clear();
copy( new_nodes_parent.begin(),
new_nodes_parent.end(),
back_inserter(nodes) );
// Repair cell lists of Nodes, and node connectivities
ConstructConnections();
daughter->ConstructConnections();
if (boundary_touched_flag) {
m->boundary_polygon->ConstructConnections();
}
// collecting neighbors of divided cell
list<CellBase *> broken_neighbors;
// this cell's old neighbors
copy(neighbors.begin(), neighbors.end(), back_inserter(broken_neighbors) );
// this cell
broken_neighbors.push_back(this);
// its daughter
broken_neighbors.push_back(daughter);
// Recalculate area of parent and daughter
area = CalcArea();
daughter->area = daughter->CalcArea();
SetIntegrals();
daughter->SetIntegrals();
// Add a "Cell Wall" for diffusion algorithms
Wall *wall = new Wall( new_node_ind[0], new_node_ind[1], this, daughter );
AddWall( wall );
daughter->AddWall( wall );
//cerr << "Correct walls of cell " << Index() << " and daughter " << daughter->Index() << endl;
// Move Walls to daughter cell
list <Wall *> copy_walls = walls;
for (list<Wall *>::iterator w = copy_walls.begin(); w!=copy_walls.end(); w++) {
//cerr << "Doing wall, before: " << **w << endl;
// checks the nodes of the wall and gives it away if appropriate
(*w)->CorrectWall ( );
//cerr << "and after: " << **w << endl;
}
// Correct tranporterconcentrations of divided walls
for (int i=0;i<4;i++) {
if (div_wall[i]) {
div_wall[i]->SetLength();
div_wall[i]->CorrectTransporters(orig_length[i/2]);
}
}
//cerr << "Cell " << index << " has been dividing, and gave birth to Cell " << daughter->index << endl;
// now reconstruct neighbor list for all "broken" neighbors
for (list<CellBase *>::iterator i=broken_neighbors.begin(); i!=broken_neighbors.end(); i++) {
((Cell *)(*i))->ConstructNeighborList();
}
ConstructNeighborList();
daughter->ConstructNeighborList();
m->plugin->OnDivide(&parent_info, daughter, this);
daughter->div_counter=(++div_counter);
}
// Move the whole cell
void Cell::Move(const Vector T) {
for (list<Node *>::const_iterator i=nodes.begin(); i!=nodes.end(); i++) {
*(*i)+=T;
}
}
double Cell::Displace(double dx, double dy, double dh)
{
// Displace whole cell, add resulting energy to dh,
// and accept displacement if energetically favorable
//
// Method is called if a "fixed" node is displaced
// Warning: length constraint not yet CORRECTLY implemented for this function
// Attempt to move this cell in a random direction
// Vector movement(par.mc_cell_stepsize*(RANDOM()-0.5),par.mc_cell_stepsize*(RANDOM()-0.5),0);
dh=0;
Vector movement(dx,dy,0);
vector< pair<Node *, Node *> > length_edges;
vector<double> cellareas;
cellareas.reserve(neighbors.size());
// for the length constraint, collect all edges to this cell's nodes,
// which are not part of the cell
// the length of these edges will change
double old_length=0.;
for (list<Node *>::const_iterator i=nodes.begin(); i!=nodes.end(); i++) {
for (list<Neighbor>::const_iterator n=(*i)->owners.begin(); n!=(*i)->owners.end(); n++) {
if (n->getCell()!=this) {
length_edges.push_back( pair <Node *,Node *> (*i, n->nb1) );
length_edges.push_back( pair <Node *,Node *> (*i, n->nb2) );
old_length +=
DSQR(Node::target_length-(*(*i)-*(n->nb1)).Norm())+
DSQR(Node::target_length-(*(*i)-*(n->nb2)).Norm());
}
}
}
// calculate area energy difference of neighboring cells
// (this cells' shape remains unchanged)
double old_area_energy=0., old_length_energy=0.;
for (list<CellBase *>::const_iterator i=neighbors.begin(); i!=neighbors.end(); i++) {
old_area_energy += DSQR((*i)->Area()-(*i)->TargetArea());
old_length_energy += DSQR((*i)->Length()-(*i)->TargetLength());
}
Move(movement);
double new_area_energy=0., new_length_energy=0.;
for (list<CellBase *>::const_iterator i=neighbors.begin(); i!=neighbors.end(); i++) {
cellareas.push_back((*i)->CalcArea());
new_area_energy += DSQR(cellareas.back()-(*i)->TargetArea());
new_length_energy += DSQR((*i)->CalcLength()-(*i)->TargetLength());
}
double new_length=0;
for ( vector< pair< Node *, Node * > >::const_iterator e = length_edges.begin(); e != length_edges.end(); e++) {
new_length += DSQR(Node::target_length - (*(e->first) - *(e->second)).Norm());
}
dh += (new_area_energy - old_area_energy) + (new_length_energy - old_length_energy) * lambda_celllength +
par.lambda_length * (new_length - old_length);
if (dh<0 || RANDOM()<exp(-dh/par.T)) {
// update areas of cells
//cerr << "neighbors: ";
list<CellBase *>::const_iterator nb_it = neighbors.begin();
for (vector<double>::const_iterator ar_it = cellareas.begin(); ar_it!=cellareas.end(); ( ar_it++, nb_it++) ) {
((Cell *)(*nb_it))->area = *ar_it;
(*nb_it)->SetIntegrals();
}
//cerr << endl;
} else {
Move ( -1*movement);
}
return dh;
}
void Cell::Displace (void)
{
Displace(par.mc_cell_stepsize*(RANDOM()-0.5),par.mc_cell_stepsize*(RANDOM()-0.5),0);
}
// Get energy level of whole cell (excluding length constraint?)
double Cell::Energy(void) const
{
double energy = 0.;
double length_contribution = 0.;
for (list<Node *>::const_iterator i=nodes.begin(); i!=nodes.end(); i++) {
for (list<Neighbor>::const_iterator n=(*i)->owners.begin(); n!=(*i)->owners.end(); n++) {
if (n->getCell()==this) {
length_contribution +=
DSQR(Node::target_length-(*(*i)-*(n->nb1)).Norm()) +
DSQR(Node::target_length-(*(*i)-*(n->nb2)).Norm());
}
}
}
// wall elasticity constraint
energy += par.lambda_length * length_contribution;
// area constraint
energy += DSQR(CalcArea() - target_area);
// cell length constraint
energy += lambda_celllength * DSQR(Length() - target_length);
return energy;
}
bool Cell::SelfIntersect(void)
{
// The (obvious) O(N*N) algorithm
// Compare each edge against each other edge
// An O(N log(N)) algorithm by Shamos & Hoey (1976) supposedly exists;
// it was mentioned on comp.graphics.algorithms
// But I haven't been able to lay my hand on the paper.
// Let's try whether we need it....
// method used: http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
for (list<Node *>::const_iterator i=nodes.begin(); i!=nodes.end(); i++) {
list<Node *>::const_iterator j=i;
++j;
for (; j!=nodes.end(); j++)
{
Vector v1 = *(*i);
list<Node *>::const_iterator nb=i;
nb++;
if (nb == nodes.end()) {
nb = nodes.begin();
}
Vector v2 = *(*nb);
Vector v3 = *(*j);
nb=j;
nb++;
if (nb == nodes.end()) {
nb = nodes.begin();
}
Vector v4=*( *nb );
double denominator =
(v4.y - v3.y)*(v2.x - v1.x) - (v4.x - v3.x)*(v2.y - v1.y);
double ua =
((v4.x - v3.x)*(v1.y - v3.y) - (v4.y - v3.y)*(v1.x -v3.x))/denominator;
double ub =
((v2.x - v1.x)*(v1.y-v3.y) - (v2.y- v1.y)*(v1.x - v3.x))/denominator;
if ( ( TINY < ua && ua < 1.-TINY ) && ( TINY < ub && ub < 1.-TINY ) ) {
//cerr << "ua = " << ua << ", ub = " << ub << endl;
return true;
}
}
}
return false;
}
bool Cell::MoveSelfIntersectsP(Node *moving_node_ind, Vector new_pos)
{
// Check whether the polygon will self-intersect if moving_node_ind
// were displaced to new_pos
// Compare the two new edges against each other edge
// O(2*N)
// method used for segment intersection:
// http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
Vector neighbor_of_moving_node[2];
//cerr << "list<Node *>::const_iterator moving_node_ind_pos = find (nodes.begin(),nodes.end(),moving_node_ind);\n";
list<Node *>::const_iterator moving_node_ind_pos = find (nodes.begin(),nodes.end(),moving_node_ind);
list<Node *>::const_iterator nb = moving_node_ind_pos;
//cerr << "Done\n";
nb++;
if (nb == nodes.end()) {
nb = nodes.begin();
}
neighbor_of_moving_node[0]=*(*nb);
nb=moving_node_ind_pos;
if (nb == nodes.begin()) {
nb = nodes.end();
}
nb--;
neighbor_of_moving_node[1]=*( *nb );
for (list<Node *>::const_iterator i=nodes.begin(); i!=nodes.end(); i++) {
for (int j=0;j<2;j++) { // loop over the two neighbors of moving node
list<Node *>::const_iterator nb=i;
nb++;
if (nb == nodes.end()) {
nb = nodes.begin();
}
if (*i == moving_node_ind || *nb == moving_node_ind) {
// do not compare to self
continue;
}
Vector v3 = *(*i);
Vector v4 = *(*nb);
double denominator =
(v4.y - v3.y)*(neighbor_of_moving_node[j].x - new_pos.x) - (v4.x - v3.x)*(neighbor_of_moving_node[j].y - new_pos.y);
double ua =
((v4.x - v3.x)*(new_pos.y - v3.y) - (v4.y - v3.y)*(new_pos.x -v3.x))/denominator;
double ub =
((neighbor_of_moving_node[j].x - new_pos.x)*(new_pos.y-v3.y) - (neighbor_of_moving_node[j].y- new_pos.y)*(new_pos.x - v3.x))/denominator;
if ( ( TINY < ua && ua < 1.-TINY ) && ( TINY < ub && ub < 1.-TINY ) ) {
//cerr << "ua = " << ua << ", ub = " << ub << endl;
return true;
}
}
}
return false;
}
/*! \brief Test if this cell intersects with the given line.
*/
bool Cell::IntersectsWithLineP(const Vector v1, const Vector v2)
{
// Compare the line against each edge
// method used: http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
for (list<Node *>::const_iterator i=nodes.begin(); i!=nodes.end(); i++)
{
Vector v3 = *(*i);
list<Node *>::const_iterator nb=i;
nb++;
if (nb == nodes.end()) {
nb = nodes.begin();
}
Vector v4 = *(*nb);
double denominator =
(v4.y - v3.y)*(v2.x - v1.x) - (v4.x - v3.x)*(v2.y - v1.y);
double ua =
((v4.x - v3.x)*(v1.y - v3.y) - (v4.y - v3.y)*(v1.x -v3.x))/denominator;
double ub =
((v2.x - v1.x)*(v1.y-v3.y) - (v2.y- v1.y)*(v1.x - v3.x))/denominator;
if ( ( TINY < ua && ua < 1.-TINY ) && ( TINY < ub && ub < 1.-TINY ) ) {
return true;
}
}
return false;
}
/*! \brief Constructs Walls, but only one per cell boundary.
Standard method constructs a Wall for each cell wall element,
making transport algorithms computationally more intensive than needed.
We can remove this? Well, let's leave it in the code in case we need it for something else. E.g. for importing leaf architectures in different formats than our own... :-)
*/
void Cell::ConstructWalls(void)
{
return;
if (dead) return;
walls.clear();
neighbors.clear();
// Get "corner points; i.e. nodes where more than 2 cells are connected
list<Node *> corner_points;
for (list<Node *>::const_iterator i=nodes.begin(); i!=nodes.end();i++) {
// look for nodes belonging to >2 cells
if ((*i)->owners.size()>2) {
// push onto list
corner_points.push_back(*i);
}
}
// Construct Walls between corner points
// previous one in list
list<Node *>::const_iterator nb = (--corner_points.end());
// loop over list,
for (list<Node *>::const_iterator i=corner_points.begin(); i!=corner_points.end(); ( i++, nb++) ) {
if (nb==corner_points.end()) nb=corner_points.begin();
// add owning cells to a list
list<Cell *> owning_cells;
Node &n(*(*i));
for (list<Neighbor>::const_iterator j=n.owners.begin(); j!=n.owners.end(); j++) {
owning_cells.push_back(j->cell);
}
Node &n2(*(*nb));
for (list<Neighbor>::const_iterator j=n2.owners.begin(); j!=n2.owners.end(); j++) {
owning_cells.push_back(j->cell);
}
// sort cell owners
owning_cells.sort( mem_fun( &Cell::Cmp ));
// find duplicates
vector<Cell *> duplicates;
list<Cell *>::const_iterator prevj = (--owning_cells.end());
for (list<Cell *>::const_iterator j=owning_cells.begin(); j!=owning_cells.end(); ( j++, prevj++) ) {
if (prevj==owning_cells.end())
prevj=owning_cells.begin();
if (*j==*prevj)
duplicates.push_back(*j);
}
if (duplicates.size()==3) { // ignore cell boundary (this occurs only after the first division, I think)
vector<Cell *>::iterator dup_it = find_if(duplicates.begin(),duplicates.end(),mem_fun(&Cell::BoundaryPolP) );
if (dup_it!=duplicates.end())
duplicates.erase(dup_it);
else {
return;
}
}
// One Wall for each neighbor, so we should be able to correctly construct neighbor lists here.
if (duplicates[0]==this) {
AddWall( new Wall(*nb,*i,duplicates[0],duplicates[1]) );
if (!duplicates[1]->BoundaryPolP()) {
neighbors.push_back(duplicates[1]);
}
} else {
AddWall ( new Wall(*nb,*i,duplicates[1],duplicates[0]) );
if (!duplicates[0]->BoundaryPolP()) {
neighbors.push_back(duplicates[0]);
}
}
}
}
void BoundaryPolygon::Draw(QGraphicsScene *c, QString tooltip)
{
// Draw the BoundaryPolygon on a QCanvas object
CellItem* p = new CellItem(this, c);
QPolygonF pa(nodes.size());
int cc=0;
for (list<Node *>::const_iterator n=nodes.begin(); n!=nodes.end(); n++) {
Node *i=*n;
pa[cc++] = QPoint((int)((Offset().x+i->x)*Factor()), (int)((Offset().y+i->y)*Factor()) );
}
p->setPolygon(pa);
p->setPen(par.outlinewidth>=0?QPen( QColor(par.cell_outline_color),par.outlinewidth):QPen(Qt::NoPen));
p->setBrush( Qt::NoBrush );
p->setZValue(1);
if (!tooltip.isEmpty())
p->setToolTip(tooltip);
p->show();
}
void Cell::Flux(double *flux, double *D)
{
// loop over cell edges
for (int c=0;c<NChem();c++)
flux[c]=0.;
for (list<Wall *>::iterator i=walls.begin(); i!=walls.end(); i++) {
// leaf cannot take up chemicals from environment ("no flux boundary")
if ((*i)->c2->BoundaryPolP()) continue;
// flux depends on edge length and concentration difference
for (int c=0;c<NChem();c++) {
double phi = (*i)->length * ( D[c] ) * ( ((Cell *)(*i)->c2)->chem[c] - chem[c] );
#ifdef QDEBUG
if ((*i)->c1!=this) {
qDebug() << "Warning, bad cells boundary: " << (*i)->c1->Index() << ", " << index << endl;
}
#endif
flux[c] += phi;
}
}
}
// graphics stuff, not compiled for batch versions
#ifdef QTGRAPHICS
#include "canvas.h"
void Cell::Draw(QGraphicsScene *c, QString tooltip)
{
// Draw the cell on a QCanvas object
if (DeadP()) {
#ifdef QDEBUG
qDebug() << "Cell " << index << " not drawn, because dead." << endl;
#endif
return;
}
CellItem* p = new CellItem(this, c);
QPolygonF pa(nodes.size());
int cc=0;
for (list<Node *>::const_iterator n=nodes.begin(); n!=nodes.end(); n++) {
Node *i=*n;
pa[cc++] = QPoint((int)((offset[0]+i->x)*factor),
(int)((offset[1]+i->y)*factor) );
}
QColor cell_color;
m->plugin->SetCellColor(this,&cell_color);
p->setPolygon(pa);
p->setPen(par.outlinewidth>=0?QPen( QColor(par.cell_outline_color),par.outlinewidth):QPen(Qt::NoPen));
p->setBrush( cell_color );
p->setZValue(1);
if (!tooltip.isEmpty())
p->setToolTip(tooltip);
p->show();
}
void Cell::DrawCenter(QGraphicsScene *c) const {
// Maginfication derived similarly to that in nodeitem.cpp
// Why not use Cell::Magnification()?
const double mag = par.node_mag;
// construct an ellipse
QGraphicsEllipseItem *disk = new QGraphicsEllipseItem ( -1*mag, -1*mag, 2*mag, 2*mag, 0, c );
disk->setBrush( QColor("forest green") );
disk->setZValue(5);
disk->show();
Vector centroid=Centroid();
disk -> setPos((offset[0]+centroid.x)*factor,(offset[1]+centroid.y)*factor);
}
void Cell::DrawNodes(QGraphicsScene *c) const {
for (list<Node *>::const_iterator n=nodes.begin(); n!=nodes.end(); n++) {
Node *i=*n;
NodeItem *item = new NodeItem ( &(*i), c );
item->setColor();
item->setZValue(5);
item->show();
item ->setPos(((offset[0]+i->x)*factor), ((offset[1]+i->y)*factor) );
}
}
void Cell::DrawIndex(QGraphicsScene *c) const {
DrawText( c, QString("%1").arg(index));
}
// Draw any text in the cell's center
void Cell::DrawText(QGraphicsScene *c, const QString &text) const {
Vector centroid = Centroid();
QGraphicsSimpleTextItem *ctext = new QGraphicsSimpleTextItem ( text, 0, c );
ctext->setPen( QPen(QColor(par.textcolor)) );
ctext->setZValue(20);
ctext->setFont( QFont( "Helvetica", par.cellnumsize, QFont::Bold) );
ctext->show();
ctext ->setPos(((offset[0]+centroid.x)*factor),
((offset[1]+centroid.y)*factor) );
}
void Cell::DrawAxis(QGraphicsScene *c) const {
Vector long_axis;
double width;
Length(&long_axis, &width);
//cerr << "Length is " << length << endl;
long_axis.Normalise();
Vector short_axis=long_axis.Perp2D();
Vector centroid = Centroid();
Vector from = centroid - 0.5 * width * short_axis;
Vector to = centroid + 0.5 * width *short_axis;
QGraphicsLineItem *line = new QGraphicsLineItem(0, c);
line->setPen( QPen(QColor(par.arrowcolor),2) );
line->setZValue(2);
line->setLine( ( (offset[0]+from.x)*factor ),
( (offset[1]+from.y)*factor ),
( (offset[0]+to.x)*factor ),
( (offset[1]+to.y)*factor ) );
line->setZValue(10);
line->show();
}
void Cell::DrawStrain(QGraphicsScene *c) const {
MyWarning::warning("Sorry, Cell::DrawStrain temporarily not implemented.");
}
void Cell::DrawFluxes(QGraphicsScene *c, double arrowsize)
{
// get the mean flux through this cell
Vector vec_flux = ReduceCellAndWalls<Vector>( PINdir );
vec_flux.Normalise();
vec_flux *= arrowsize;
QGraphicsArrowItem *arrow = new QGraphicsArrowItem(0,c);
Vector centroid = Centroid();
Vector from = centroid - vec_flux/2.;
Vector to = centroid + vec_flux/2.;
arrow->setPen( QPen(QColor(par.arrowcolor),par.outlinewidth));
arrow->setZValue(2);
arrow->setLine( ( (offset[0]+from.x)*factor ),
( (offset[1]+from.y)*factor ),
( (offset[0]+to.x)*factor ),
( (offset[1]+to.y)*factor ) );
arrow->setZValue(10);
arrow->show();
}
void Cell::DrawWalls(QGraphicsScene *c) const {
for_each(walls.begin(), walls.end(), bind2nd ( mem_fun ( &Wall::Draw ) , c ) );
// to see the cells connected the each wall (for debugging), uncomment the following
//for_each(walls.begin(), walls.end(), bind2nd ( mem_fun ( &Wall::ShowStructure ), c ) );
}
void Cell::DrawValence(QGraphicsScene *c) const {
DrawText(c, QString("%1").arg(walls.size()) );
}
#endif // QTGRAPHICS !
/*! \brief Recalculate the lengths of the cell's Walls.
Call this function after the Monte Carlo updates, and before doing the reaction-diffusion iterations.
*/
void Cell::SetWallLengths(void)
{
for (list<Wall *>::iterator de=walls.begin(); de!=walls.end(); de++) {
// Step 1: find the path of nodes leading along the Wall.
// A Wall often represents a curved cell wall: we want the total
// length _along_ the wall here...
// Locate first and second nodes of the edge in list of nodes
list<Node *>::const_iterator first_node_edge = find(nodes.begin(), nodes.end(), (*de)->n1);
list<Node *>::const_iterator second_node_edge_plus_1 = ++find(nodes.begin(), nodes.end(), (*de)->n2);
double sum_length = 0.;
// Now, walk to the second node of the edge in the list of nodes
for (list<Node *>::const_iterator n=++first_node_edge; n!=second_node_edge_plus_1; ++n ) {
if (n==nodes.end())
n=nodes.begin(); /* wrap around */
list<Node *>::const_iterator prev_n = n;
if (prev_n==nodes.begin())
prev_n=nodes.end();
--prev_n;
// Note that Node derives from a Vector, so we can do vector calculus as defined in vector.h
sum_length += (*(*prev_n) - *(*n)).Norm();
//cerr << "Node " << *prev_n << " to " << *n << ", cumulative length = " << sum_length << endl;
}
// We got the total length of the Wall now, store it:
(*de)->length = sum_length;
//cerr << endl;
// goto next de
}
}
//! Add Wall w to the list of Walls
void Cell::AddWall( Wall *w )
{
// if necessary, we could try later inserting it at the correct position
#ifdef QDEBUG
if (w->c1 == w->c2 ){
qDebug() << "Wall between identical cells: " << w->c1->Index()<< endl;
}
#endif
// Add Wall to Cell's list
walls.push_back( w );
// Add wall to Mesh's list if it isn't there yet
if (find ( m->walls.begin(), m->walls.end(), w ) == m->walls.end() ) { m->walls.push_back(w);
}
}
//! Remove Wall w from the list of Walls
list<Wall *>::iterator Cell::RemoveWall( Wall *w )
{
// remove wall from Mesh's list
m->walls.erase( find( m->walls.begin(), m->walls.end(), w ) );
// remove wall from Cell's list
return walls.erase (find( walls.begin(), walls.end(), w ));
}
void Cell::EmitValues(double t)
{
// cerr << "Attempting to emit " << t << ", " << chem[0] << ", " << chem[1] << endl;
emit ChemMonValue(t, chem);
}
/* finis */
|