Files @ c131f8cd4b54
Branch filter:

Location: EI/VirtualLeaf/src/build_models/auxingrowthplugin.cpp

Roeland Merks
Changed auxin_growth example
/*
 *
 *  This file is part of the Virtual Leaf.
 *
 *  The Virtual Leaf is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  The Virtual Leaf is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Copyright 2010 Roeland Merks.
 *
 */

#include <QObject>
#include <QtGui>
#include "../simplugin.h"

#include "parameter.h"

#include "wallbase.h"
#include "cellbase.h"
#include "auxingrowthplugin.h"

#include "far_mem_5.h"

static const std::string _module_id("$Id$");


// To be executed after cell division
void AuxinGrowthPlugin::OnDivide(ParentInfo *parent_info, CellBase *daughter1, CellBase *daughter2)
{

  // Auxin distributes between parent and daughter according to area
  double area1 = daughter1->Area(), area2 = daughter2->Area();
  double tot_area = area1 + area2;
	
  daughter1->SetChemical(0,daughter1->Chemical(0)*(area1/tot_area));
  daughter2->SetChemical(0,daughter2->Chemical(0)*(area2/tot_area));
	
  // After divisions, parent and daughter cells get a standard stock of PINs.
  daughter1->SetChemical(1, par->initval[1]);
  daughter2->SetChemical(1, par->initval[1]);
	
	
  // Reset transporter values of parent and daughter
  QList<WallBase *> walls;
  foreach(WallBase *w, walls) { 
    w->setTransporter(daughter1, 1, 0.);
  }
}

void AuxinGrowthPlugin::SetCellColor(CellBase *c, QColor *color)
{ 

  // Red: PIN1
  // Green: Auxin
  color->setRgb(c->Chemical(1)/(1+c->Chemical(1)) * 255.,(c->Chemical(0)/(1+c->Chemical(0)) * 255.), 0);
}



void AuxinGrowthPlugin::CellHouseKeeping(CellBase *c)
{
  if (c->Boundary()==CellBase::None) {
    if (c->Area() > par->rel_cell_div_threshold * c->BaseArea() ) {
      c->SetChemical(0,0);
      c->Divide();
    }		
    // expand according to auxin concentration
    c->EnlargeTargetArea(par->auxin_dependent_growth?(c->Chemical(0)/(1.+c->Chemical(0)))*par->cell_expansion_rate:par->cell_expansion_rate);
  }  
}

void AuxinGrowthPlugin::CelltoCellTransport(Wall *w, double *dchem_c1, double *dchem_c2)
{

  // leaf edge is const source of auxin
  // (Neumann boundary condition: we specify the influx)
  if (w->C2()->BoundaryPolP()) {
    if (w->AuxinSource()) {
      double aux_flux = par->leaf_tip_source * w->Length();
      dchem_c1[0]+= aux_flux;
      return;
    } else {
      return;
    }
  }
	
  if (w->C1()->BoundaryPolP()) {
		
    if (w->AuxinSource()) {
      double aux_flux = par->leaf_tip_source * w->Length();
      dchem_c2[0] += aux_flux;
      return;
    } else {
			
      if (w->AuxinSink()) {
				
	// efflux into Shoot Apical meristem
	// we assume all PINs are directed towards shoot apical meristem
	dchem_c2[0] -= par->sam_efflux * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0));
				
	return;
      } else 
	return;
    }
  }
	
    
  // Passive fluxes (Fick's law)
  // only auxin flux now
  // flux depends on edge length and concentration difference
  int c=0;
  double phi = w->Length() * ( par->D[c] ) * ( w->C2()->Chemical(c) - w->C1()->Chemical(c) );
  dchem_c1[c] += phi; 
  dchem_c2[c] -= phi;
	
  // Active fluxes (PIN1 mediated transport)
	
  // (Transporters measured in moles, here)
  // efflux from cell 1 to cell 2
  double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)) );
	
  // efflux from cell 2 to cell 1
  double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)) );
    
  dchem_c1[0] += trans21 - trans12;
  dchem_c2[0] += trans12 - trans21;
	
}

void AuxinGrowthPlugin::WallDynamics(Wall *w, double *dw1, double *dw2)
{
  // Cells polarize available PIN1 to Shoot Apical Meristem
  if (w->C2()->BoundaryPolP()) {
    if (w->AuxinSink()) {
			
      dw1[0] = 0.; dw2[0] = 0.;
            
      // assume high auxin concentration in SAM, to convince PIN1 to polarize to it
      // exocytosis regulated0
      double nb_auxin = par->sam_auxin;
      double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin);
			
      dw1[1] = par->k1 * w->C1()->Chemical(1) * receptor_level /( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1);
			
      dw2[1] = 0.;
      return;
			
    } else {
      dw1[0]=dw2[0]=dw1[1]=dw2[1];
      return;
    }
  }
    
  if (w->C1()->BoundaryPolP()) {
    if (w->AuxinSink())  {
			
      dw1[0] = 0.; dw2[0] = 0.;
			
      // assume high auxin concentration in SAM, to convince PIN1 to polarize to it
      // exocytosis regulated
      double nb_auxin = par->sam_auxin;
      double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin);
      dw2[1] = par->k1 * w->C2()->Chemical(1) * receptor_level /( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1);
			
      dw1[1] = 0.;
      return;
			
    }  else {
      dw1[0]=dw2[0]=dw1[1]=dw2[1];
      return;
    }
  }
    
    
    
  // PIN1 localization at wall 1
  // Note: chemical 0 is Auxin (intracellular storage only)
  // Chemical 1 is PIN1 (walls and intracellular storage)
  //! \f$ \frac{d Pij/dt}{dt} = k_1 A_j \frac{P_i}{L_ij} - k_2 P_{ij} \f$
  // Note that Pij is measured in term of concentration (mol/L)
  // Pi in terms of quantity (mol)
	
  double dPijdt1=0., dPijdt2=0.;
    
  // normal cell
  double  auxin2 = w->C2()->Chemical(0);
  double receptor_level1 = auxin2 * par->r / (par->kr + auxin2);
    
  dPijdt1 = 
    // exocytosis regulated
    par->k1 * w->C1()->Chemical(1) * receptor_level1 / ( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1);
	
  double  auxin1 = w->C1()->Chemical(0);
  double receptor_level2 = auxin1 * par->r / (par->kr + auxin1);
    
  // normal cell
  dPijdt2 = 
	
    // exocytosis regulated
    par->k1 * w->C2()->Chemical(1) * receptor_level2 / ( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1);
    
  /* PIN1 of neighboring vascular cell inhibits PIN1 endocytosis */
    
  dw1[0] = 0.; dw2[0] = 0.;
  dw1[1] = dPijdt1;
  dw2[1] = dPijdt2;
}


double AuxinGrowthPlugin::complex_PijAj(CellBase *here, CellBase *nb, Wall *w)
{ 
  // gives the amount of complex "auxinreceptor-Pin1"  at the wall (at QSS) 
  //return here.Chemical(1) * nb.Chemical(0) / ( par->km + here.Chemical(1));
	
  double nb_aux = (nb->BoundaryPolP() && w->AuxinSink()) ? par->sam_auxin : nb->Chemical(0);
  double receptor_level = nb_aux * par->r / (par->kr + nb_aux);
	
  return here->Chemical(1) * receptor_level / ( par->km + here->Chemical(1));
	
}


void AuxinGrowthPlugin::CellDynamics(CellBase *c, double *dchem)
{
  // Note: Pi and Pij measured in numbers of molecules, not concentrations		
  double dPidt = 0.;
		
  double sum_Pij = c->SumTransporters( 1 );
		
  // exocytosis regulated:
	
  dPidt = -par->k1 * c->ReduceCellAndWalls<double>( far_3_arg_mem_fun( *this, &AuxinGrowthPlugin::complex_PijAj ) ) + par->k2 * sum_Pij;
	
  // production of PIN depends on auxin concentration
  dPidt +=  (c->AtBoundaryP()?par->pin_prod_in_epidermis:par->pin_prod) * c->Chemical(0) - c->Chemical(1) * par->pin_breakdown;
	
  // no PIN production in SAM
  if (c->Boundary() == CellBase::SAM) {
    dchem[1]=0.;
    dchem[0]= - par->sam_auxin_breakdown * c->Chemical(0);
  } else {
		
    dchem[1] = dPidt;
		
    // source of auxin
    dchem[0] = par->aux_cons - par->aux_breakdown * c->Chemical(0);
  }
}

Q_EXPORT_PLUGIN2(auxingrowthplugin, AuxinGrowthPlugin)

/* finis */