Files @ c6ad8e34e8eb
Branch filter:

Location: EI/VirtualLeaf/src/matrix.cpp

Roeland Merks
In response to referee's comment:

"I am also afraid that

the ‘snapshot’ and the ‘Export cell data’ functions do not seem to work very
well in my hands, could the program be changed so that the correct file
extension (.jpg, .tif, .txt, .dat, .xls, .csv…) is given automatically."

I corrected the "export cell data" dialog (it did not actually write the file in the submitted version). Also we now assume default file extensions (.jpg for snapshot and .csv for data export) if none is given.

--
user: Roeland Merks <roeland.merks@cwi.nl>
branch 'default'
changed src/VirtualLeaf.pro
changed src/canvas.cpp
removed src/miscq.cpp
removed src/miscq.h
/*
 *
 *  This file is part of the Virtual Leaf.
 *
 *  VirtualLeaf is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  VirtualLeaf is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Copyright 2010 Roeland Merks.
 *
 */

#include <string>
#include <ostream>
#include <cmath>
#include "vector.h"
#include "matrix.h"
#include "tiny.h"

static const std::string _module_id("$Id$");

Matrix::Matrix(const Vector &c1, const Vector &c2, const Vector &c3) {

  Alloc();

  mat[0][0]=c1.x; mat[0][1]=c2.x; mat[0][2]=c3.x;
  mat[1][0]=c1.y; mat[1][1]=c2.y; mat[1][2]=c3.y;
  mat[2][0]=c1.z; mat[2][1]=c2.z; mat[2][2]=c3.z;
}

void Matrix::Alloc(void)
{
  // constructor
  mat = new double*[3];
  mat[0] = new double[9];
  for (int i=1;i<3;i++)
    mat[i]=mat[i-1]+3;
}

Matrix::~Matrix()
{
  // destructor
  delete[] mat[0];
  delete[] mat;
}

Matrix::Matrix(void)
{
  // constructor
  Alloc();

  // clear matrix
  for (int i=0;i<9;i++) {
    mat[0][i]=0.;
  }
}

Matrix::Matrix(const Matrix &source)
{
  // copy constructor
  Alloc();

  for (int i=0;i<9;i++) {
    mat[0][i]=source.mat[0][i];
  }
}


void Matrix::operator=(const Matrix &source)
{
  // assignment

  // don't assign to self
  if (this==&source) return;

  // copy 
  for (int i=0;i<9;i++)
    mat[0][i]=source.mat[0][i];
}


void Matrix::print(ostream *os)
{
  *os << "{ { " << mat[0][0] << "," << mat[0][1] << "," << mat[0][2] 
      << "},{" << mat[1][0] << "," << mat[1][1] << "," << mat[1][2] 
      << "},{" << mat[2][0] << "," << mat[2][1] << "," << mat[2][2] << "} }";
}

ostream &operator<<(ostream &os, Matrix &v) {
  v.print(&os);
  return os;
}


Vector Matrix::operator*(const Vector &v) const
{
  // matrix * vector
  Vector result;

  result.x = mat[0][0]*v.x+mat[0][1]*v.y+mat[0][2]*v.z;
  result.y = mat[1][0]*v.x+mat[1][1]*v.y+mat[1][2]*v.z;
  result.z = mat[2][0]*v.x+mat[2][1]*v.y+mat[2][2]*v.z;

  return result;
}


bool Matrix::operator==(Matrix &m) const
{
  for (int i=0;i<9;i++) {
    if ((mat[0][i]-m.mat[0][i])>TINY)
      return false;
  }
  return true;
}

double Matrix::Det(void) const
{
  return 
    - mat[0][2]*mat[0][4]*mat[0][6]
    + mat[0][1]*mat[0][5]*mat[0][6] 
    + mat[0][2]*mat[0][3]*mat[0][7]
    - mat[0][0]*mat[0][5]*mat[0][7]
    - mat[0][1]*mat[0][3]*mat[0][8]
    + mat[0][0]*mat[0][4]*mat[0][8];
}

Matrix Matrix::Inverse(void) const
{

  // return the Inverse of this matrix
  double rd=1./Det(); // Reciproce Det;
  Matrix inverse;
  inverse.mat[0][0]=rd*(-mat[0][5]*mat[0][7]+mat[0][4]*mat[0][8]);
  inverse.mat[0][1]=rd*( mat[0][2]*mat[0][7]-mat[0][1]*mat[0][8]);
  inverse.mat[0][2]=rd*(-mat[0][2]*mat[0][4]+mat[0][1]*mat[0][5]);
  inverse.mat[0][3]=rd*( mat[0][5]*mat[0][6]-mat[0][3]*mat[0][8]);
  inverse.mat[0][4]=rd*(-mat[0][2]*mat[0][6]+mat[0][0]*mat[0][8]);
  inverse.mat[0][5]=rd*( mat[0][2]*mat[0][3]-mat[0][0]*mat[0][5]);
  inverse.mat[0][6]=rd*(-mat[0][4]*mat[0][6]+mat[0][3]*mat[0][7]);
  inverse.mat[0][7]=rd*( mat[0][1]*mat[0][6]-mat[0][0]*mat[0][7]);
  inverse.mat[0][8]=rd*(-mat[0][1]*mat[0][3]+mat[0][0]*mat[0][4]);

  return inverse;
}

void Matrix::Rot2D(double theta)
{ 
  // make this matrix a rotation matrix over theta
  // see http://mathworld.wolfram.com/RotationMatrix.html

  mat[0][0] = cos(theta); mat[0][1]=sin(theta);
  mat[1][0] = -sin(theta); mat[1][1]=cos(theta);
  mat[0][2] = mat[1][2] = mat[2][0] = mat[2][1] = mat[2][2] = 0.;
}

/* finis */