Files @ d7edbe56b125
Branch filter:

Location: EI/VirtualLeaf/src/TutorialCode/Tutorial4/tutorial4.cpp

Roeland Merks
The snapshot feature stopped working on Windows. The problem was in MainBase::Save, where the "format" argument was added to "image->save". On Windows the file format must be given in Capitals and in specific formats (e.g. TIFF works, TIF not).

It is much safer to leave the 'format' argument out and let the system guess the format from the file extension.

--
user: Roeland Merks <roeland.merks@cwi.nl>
branch 'default'
changed src/canvas.cpp
changed src/mainbase.cpp
changed src/mainbase.h
/*
 *
 *  This file is part of the Virtual Leaf.
 *
 *  The Virtual Leaf is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  The Virtual Leaf is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Copyright 2010 Roeland Merks.
 *
 */

#include <QObject>
#include <QtGui>
#include <fstream>
#include "simplugin.h"

#include "parameter.h"

#include "wallbase.h"
#include "cellbase.h"
#include "tutorial4.h"
#include "flux_function.h"

static const std::string _module_id("$Id$");

QString Tutorial4::ModelID(void) {
  // specify the name of your model here
  return QString( "4: Dynamic PIN orientation" );
}

// return the number of chemicals your model uses
int Tutorial4::NChem(void) { return 2; }

// To be executed after cell division
void Tutorial4::OnDivide(ParentInfo *parent_info, CellBase *daughter1, CellBase *daughter2) {

	// After divisions, parent and daughter cells get a standard stock of PINs.
	daughter1->SetChemical(1, par->initval[1]);
	daughter2->SetChemical(1, par->initval[1]);
	
	
}

void Tutorial4::SetCellColor(CellBase *c, QColor *color) { 
  // add cell coloring rules here
	// Red: PIN1
	// Green: Auxin
	color->setRgb(c->Chemical(1)/(1+c->Chemical(1)) * 255.,(c->Chemical(0)/(1+c->Chemical(0)) * 255.), 0);
	
}

void Tutorial4::CellHouseKeeping(CellBase *c) {
  // add cell behavioral rules here
	
	c->EnlargeTargetArea(c->Chemical(0)/(1.+c->Chemical(0))*par->cell_expansion_rate);
	
	if (c->Area() > par->rel_cell_div_threshold * c->BaseArea()) {
		c->Divide();
	}
}

void Tutorial4::CelltoCellTransport(Wall *w, double *dchem_c1, double *dchem_c2) {
  // add biochemical transport rules here
	double phi = w->Length() * par->D[0] * ( w->C2()->Chemical(0) - w->C1()->Chemical(0) );
	dchem_c1[0]+=phi;
	dchem_c2[0]-=phi;
	
	// Active fluxes (PIN1 mediated transport)
	
    // (Transporters measured in moles, here)
    // efflux from cell 1 to cell 2
    double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)) );
	
    // efflux from cell 2 to cell 1
    double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)) );
    
    dchem_c1[0] += trans21 - trans12;
    dchem_c2[0] += trans12 - trans21;
	
	// Influx at leaf "AuxinSource" (as specified in initial condition)
	if (w->AuxinSource()) {
		double aux_flux = par->leaf_tip_source * w->Length(); 
		dchem_c1[0] += aux_flux;
		dchem_c2[0] += aux_flux;
	}
}

double Tutorial4::PINflux(CellBase *this_cell, CellBase *adjacent_cell, Wall *w) {
	// PIN1 localization at wall
    // Note: chemical 0 is Auxin (intracellular storage only)
    //  PIN1 is Chemical 1 (both in walls and intracellular storage)
    //! \f$ \frac{d Pij/dt}{dt} = k_1 A_j \frac{P_i}{L_ij} - k_2 P_{ij} \f$
    // Note that Pij is measured in term of concentration (mol/L)
    // Pi in terms of quantity (mol)
	
	// Equations as in Merks et al., Trends in Plant Science 2007
    
    // calculate PIN translocation rate from cell to membrane
	double adj_auxin =  adjacent_cell->Chemical(0);
    double receptor_level = adj_auxin * par->r / (par->kr + adj_auxin);
	double pin_atwall; // pick the correct side of the Wall
	
	if (w->C1() == this_cell) pin_atwall = w->Transporters1(1); 
	else pin_atwall=w->Transporters2(1);
	
	// note: pin_flux is net flux from endosome to wall
	double pin_flux = par->k1 * this_cell->Chemical(1) * receptor_level / ( par->km + this_cell->Chemical(1) ) - par->k2 * pin_atwall;
	return pin_flux;


}


void Tutorial4::WallDynamics(Wall *w, double *dw1, double *dw2) {
  // add biochemical networks for reactions occuring at walls here
    dw1[0] = 0.; dw2[0] = 0.; // chemical 0 unused in walls
	dw1[1] = PINflux(w->C1(),w->C2(),w);
    dw2[1] = PINflux(w->C2(),w->C1(),w);
	//static ofstream pf("pin_flux.dat");
	//pf << dw1[1] << " " << dw2[1] << " " << w->C1()->Chemical(1) << " " << w->C2()->Chemical(1) << endl;
	
}

void Tutorial4::CellDynamics(CellBase *c, double *dchem) { 
	// add biochemical networks for intracellular reactions here
	
	// sum all incoming fluxes of PINs
	dchem[1] =  - SumFluxFromWalls( c, Tutorial4::PINflux );
	
	
	
}


Q_EXPORT_PLUGIN2(tutorial4, Tutorial4)