Files
@ 215974bd7440
Branch filter:
Location: MD/arcos/fish90/src/genbunal.f90
215974bd7440
46.1 KiB
text/x-fortran
Edited file README via RhodeCode
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 | !
! file genbun.f
!
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
! . .
! . copyright (c) 2004 by UCAR .
! . .
! . UNIVERSITY CORPORATION for ATMOSPHERIC RESEARCH .
! . .
! . all rights reserved .
! . .
! . .
! . FISHPACK version 5.0 .
! . .
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
! * *
! * F I S H P A C K *
! * *
! * *
! * A PACKAGE OF FORTRAN SUBPROGRAMS FOR THE SOLUTION OF *
! * *
! * SEPARABLE ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS *
! * *
! * (Version 5.0 , JUNE 2004) *
! * *
! * BY *
! * *
! * JOHN ADAMS, PAUL SWARZTRAUBER AND ROLAND SWEET *
! * *
! * OF *
! * *
! * THE NATIONAL CENTER FOR ATMOSPHERIC RESEARCH *
! * *
! * BOULDER, COLORADO (80307) U.S.A. *
! * *
! * WHICH IS SPONSORED BY *
! * *
! * THE NATIONAL SCIENCE FOUNDATION *
! * *
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
!
! SUBROUTINE GENBUN (NPEROD,N,MPEROD,M,A,B,C,IDIMY,Y,IERROR)
!
!
! DIMENSION OF A(M),B(M),C(M),Y(IDIMY,N)
! ARGUMENTS
!
! LATEST REVISION JUNE 2004
!
! PURPOSE THE NAME OF THIS PACKAGE IS A MNEMONIC FOR THE
! GENERALIZED BUNEMAN ALGORITHM.
!
! IT SOLVES THE REAL LINEAR SYSTEM OF EQUATIONS
!
! A(I)*X(I-1,J) + B(I)*X(I,J) + C(I)*X(I+1,J)
! + X(I,J-1) - 2.*X(I,J) + X(I,J+1) = Y(I,J)
!
! FOR I = 1,2,...,M AND J = 1,2,...,N.
!
! INDICES I+1 AND I-1 ARE EVALUATED MODULO M,
! I.E., X(0,J) = X(M,J) AND X(M+1,J) = X(1,J),
! AND X(I,0) MAY EQUAL 0, X(I,2), OR X(I,N),
! AND X(I,N+1) MAY EQUAL 0, X(I,N-1), OR X(I,1)
! DEPENDING ON AN INPUT PARAMETER.
!
! USAGE CALL GENBUN (NPEROD,N,MPEROD,M,A,B,C,IDIMY,Y,
! IERROR)
!
! ARGUMENTS
!
! ON INPUT NPEROD
!
! INDICATES THE VALUES THAT X(I,0) AND
! X(I,N+1) ARE ASSUMED TO HAVE.
!
! = 0 IF X(I,0) = X(I,N) AND X(I,N+1) =
! X(I,1).
! = 1 IF X(I,0) = X(I,N+1) = 0 .
! = 2 IF X(I,0) = 0 AND X(I,N+1) = X(I,N-1).
! = 3 IF X(I,0) = X(I,2) AND X(I,N+1) =
! X(I,N-1).
! = 4 IF X(I,0) = X(I,2) AND X(I,N+1) = 0.
!
! N
! THE NUMBER OF UNKNOWNS IN THE J-DIRECTION.
! N MUST BE GREATER THAN 2.
!
! MPEROD
! = 0 IF A(1) AND C(M) ARE NOT ZERO
! = 1 IF A(1) = C(M) = 0
!
! M
! THE NUMBER OF UNKNOWNS IN THE I-DIRECTION.
! N MUST BE GREATER THAN 2.
!
! A,B,C
! ONE-DIMENSIONAL ARRAYS OF LENGTH M THAT
! SPECIFY THE COEFFICIENTS IN THE LINEAR
! EQUATIONS GIVEN ABOVE. IF MPEROD = 0
! THE ARRAY ELEMENTS MUST NOT DEPEND UPON
! THE INDEX I, BUT MUST BE CONSTANT.
! SPECIFICALLY, THE SUBROUTINE CHECKS THE
! FOLLOWING CONDITION .
!
! A(I) = C(1)
! C(I) = C(1)
! B(I) = B(1)
!
! FOR I=1,2,...,M.
!
! IDIMY
! THE ROW (OR FIRST) DIMENSION OF THE
! TWO-DIMENSIONAL ARRAY Y AS IT APPEARS
! IN THE PROGRAM CALLING GENBUN.
! THIS PARAMETER IS USED TO SPECIFY THE
! VARIABLE DIMENSION OF Y.
! IDIMY MUST BE AT LEAST M.
!
! Y
! A TWO-DIMENSIONAL COMPLEX ARRAY THAT
! SPECIFIES THE VALUES OF THE RIGHT SIDE
! OF THE LINEAR SYSTEM OF EQUATIONS GIVEN
! ABOVE.
! Y MUST BE DIMENSIONED AT LEAST M*N.
!
!
! ON OUTPUT Y
!
! CONTAINS THE SOLUTION X.
!
! IERROR
! AN ERROR FLAG WHICH INDICATES INVALID
! INPUT PARAMETERS EXCEPT FOR NUMBER
! ZERO, A SOLUTION IS NOT ATTEMPTED.
!
! = 0 NO ERROR.
! = 1 M .LE. 2 .
! = 2 N .LE. 2
! = 3 IDIMY .LT. M
! = 4 NPEROD .LT. 0 OR NPEROD .GT. 4
! = 5 MPEROD .LT. 0 OR MPEROD .GT. 1
! = 6 A(I) .NE. C(1) OR C(I) .NE. C(1) OR
! B(I) .NE. B(1) FOR
! SOME I=1,2,...,M.
! = 7 A(1) .NE. 0 OR C(M) .NE. 0 AND
! MPEROD = 1
! = 20 If the dynamic allocation of real and
! complex work space required for solution
! fails (for example if N,M are too large
! for your computer)
!
!
! SPECIAL CONDITONS NONE
!
! I/O NONE
!
! PRECISION SINGLE
!
! REQUIRED FILES comf.f,gnbnaux.f,fish.f
! FILES
!
! LANGUAGE FORTRAN 90
!
! HISTORY WRITTEN IN 1979 BY ROLAND SWEET OF NCAR'S
! SCIENTIFIC COMPUTING DIVISION. MADE AVAILABLE
! ON NCAR'S PUBLIC LIBRARIES IN JANUARY, 1980.
! Revised in June 2004 by John Adams using
! Fortran 90 dynamically allocated work space.
!
! ALGORITHM THE LINEAR SYSTEM IS SOLVED BY A CYCLIC
! REDUCTION ALGORITHM DESCRIBED IN THE
! REFERENCE.
!
! PORTABILITY FORTRAN 90 --
! THE MACHINE DEPENDENT CONSTANT PI IS
! DEFINED IN FUNCTION PIMACH.
!
! REFERENCES SWEET, R., "A CYCLIC REDUCTION ALGORITHM FOR
! SOLVING BLOCK TRIDIAGONAL SYSTEMS OF ARBITRARY
! DIMENSIONS," SIAM J. ON NUMER. ANAL., 14 (1977)
! PP. 706-720.
!
! ACCURACY THIS TEST WAS PERFORMED ON a platform with
! 64 bit floating point arithmetic.
! A UNIFORM RANDOM NUMBER GENERATOR WAS USED
! TO CREATE A SOLUTION ARRAY X FOR THE SYSTEM
! GIVEN IN THE 'PURPOSE' DESCRIPTION ABOVE
! WITH
! A(I) = C(I) = -0.5*B(I) = 1, I=1,2,...,M
!
! AND, WHEN MPEROD = 1
!
! A(1) = C(M) = 0
! A(M) = C(1) = 2.
!
! THE SOLUTION X WAS SUBSTITUTED INTO THE
! GIVEN SYSTEM AND, USING DOUBLE PRECISION
! A RIGHT SIDE Y WAS COMPUTED.
! USING THIS ARRAY Y, SUBROUTINE GENBUN
! WAS CALLED TO PRODUCE APPROXIMATE
! SOLUTION Z. THEN RELATIVE ERROR
! E = MAX(ABS(Z(I,J)-X(I,J)))/
! MAX(ABS(X(I,J)))
! WAS COMPUTED, WHERE THE TWO MAXIMA ARE TAKEN
! OVER I=1,2,...,M AND J=1,...,N.
!
! THE VALUE OF E IS GIVEN IN THE TABLE
! BELOW FOR SOME TYPICAL VALUES OF M AND N.
!
! M (=N) MPEROD NPEROD E
! ------ ------ ------ ------
!
! 31 0 0 6.E-14
! 31 1 1 4.E-13
! 31 1 3 3.E-13
! 32 0 0 9.E-14
! 32 1 1 3.E-13
! 32 1 3 1.E-13
! 33 0 0 9.E-14
! 33 1 1 4.E-13
! 33 1 3 1.E-13
! 63 0 0 1.E-13
! 63 1 1 1.E-12
! 63 1 3 2.E-13
! 64 0 0 1.E-13
! 64 1 1 1.E-12
! 64 1 3 6.E-13
! 65 0 0 2.E-13
! 65 1 1 1.E-12
! 65 1 3 4.E-13
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
SUBROUTINE GENBUN(NPEROD, N, MPEROD, M, A, B, C, IDIMY, Y, IERROR)
USE fish
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
TYPE(fishworkspace) :: w
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: NPEROD, N, MPEROD, M, IDIMY
INTEGER, INTENT(OUT) :: IERROR
DOUBLE PRECISION, DIMENSION(:) :: A, B, C
DOUBLE PRECISION, INTENT(INOUT) :: Y(IDIMY,*)
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER :: IRWK, ICWK
!-----------------------------------------------
write(*,*) 'fish90: genbun'
IERROR = 0
! check input arguments
IF (M <= 2) then
ierror = 1
return
end if
IF (N <= 2) then
ierror = 2
return
end if
IF (IDIMY < M) then
ierror = 3
return
end if
IF (NPEROD<0 .OR. NPEROD>4) then
ierror = 4
return
end if
IF (MPEROD<0 .OR. MPEROD>1) then
ierror = 5
return
end if
! compute and allocate real work space for genbun
CALL GEN_SPACE (N, M, IRWK)
ICWK = 0
CALL ALLOCATFISH (IRWK, ICWK, W, IERROR)
! return if allocation failed (e.g., if n,m are too large)
IF (IERROR == 20) THEN
write(*,*) 'error call ALLOCATFISH'
RETURN
END IF
call genbunn(NPEROD,N,MPEROD,M,A,B,C,IDIMY,Y,IERROR,w%rew,IRWK)
! release allocated work space
CALL FISHFIN (W,IERROR)
IF (IERROR == 20) THEN
write(*,*) 'error call FISHFIN'
RETURN
END IF
!
END SUBROUTINE GENBUN
SUBROUTINE GENBUNN(NPEROD,N,MPEROD,M,vecA,vecB,vecC,IDIMY,matY, &
IERROR,vecW,IW)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: NPEROD, N, MPEROD, M, IDIMY,IW
INTEGER, INTENT(INOUT) :: IERROR
DOUBLE PRECISION, DIMENSION(M), INTENT(IN) :: vecA, vecB, vecC
DOUBLE PRECISION, DIMENSION(IW), INTENT(OUT) :: vecW
DOUBLE PRECISION, DIMENSION(IDIMY,N),INTENT(INOUT) :: matY
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER :: I, MP1, IWBA, IWBB, IWBC, IWB2, IWB3, IWW1, IWW2, IWW3, &
IWD, IWTCOS, IWP, IW2, K, J, MP, NP, &
IPSTOR, IREV, MH, MHM1, MODD, NBY2, MSKIP
DOUBLE PRECISION :: A1
!-----------------------------------------------
IF (MPEROD /= 1) THEN
DO I = 2, M
IF (vecA(I) /= vecC(1)) GO TO 103
IF (vecC(I) /= vecC(1)) GO TO 103
IF (vecB(I) /= vecB(1)) GO TO 103
END DO
GO TO 104
ENDIF
IF (vecA(1)/=ZERO .OR. vecC(M)/=ZERO) IERROR = 7
GO TO 104
103 CONTINUE
IERROR = 6
104 CONTINUE
IF (IERROR /= 0) RETURN
MP1 = M + 1
IWBA = MP1
IWBB = IWBA + M
IWBC = IWBB + M
IWB2 = IWBC + M
IWB3 = IWB2 + M
IWW1 = IWB3 + M
IWW2 = IWW1 + M
IWW3 = IWW2 + M
IWD = IWW3 + M
IWTCOS = IWD + M
IWP = IWTCOS + 4*N
vecW(IWBA:M-1+IWBA) = -vecA(:M)
vecW(IWBC:M-1+IWBC) = -vecC(:M)
vecW(IWBB:M-1+IWBB) = TWO - vecB(:M)
matY(:M,:N) = -matY(:M,:N)
MP = MPEROD + 1
NP = NPEROD + 1
GO TO (114,107) MP
107 CONTINUE
GO TO (108,109,110,111,123) NP
108 CONTINUE
IW2 = IW - IWP + 1
CALL POISP2 (M, N, vecW(IWBA:IWBA+M-1), vecW(IWBB:IWBB+M-1), &
vecW(IWBC:IWBC+M-1), matY, IDIMY, &
vecW(1:M), vecW(IWB2:IWB2+M-1), vecW(IWB3:IWB3+M-1), &
vecW(IWW1:IWW1+M-1), vecW(IWW2:IWW2+M-1), &
vecW(IWW3:IWW3+M-1), vecW(IWD:IWD+M-1), &
vecW(IWTCOS:IWTCOS+4*N-1), vecW(IWP:),IW2)
GO TO 112
109 CONTINUE
IW2 = IW - IWP + 1
CALL POISD2 (M, N, 1, vecW(IWBA:IWBA+M-1), vecW(IWBB:IWBB+M-1), &
vecW(IWBC::IWBC+M-1), matY, IDIMY, &
vecW(1:M), vecW(IWW1:IWW1+M-1), vecW(IWD:IWD+M-1), &
vecW(IWTCOS:IWTCOS+4*N-1), vecW(IWP:), IW2)
GO TO 112
110 CONTINUE
IW2 = IW - IWP + 1
CALL POISN2 (M, N, 1, 2, vecW(IWBA:IWBA+M-1), vecW(IWBB:IWBB+M-1), &
vecW(IWBC:IWBC+M-1), matY, IDIMY, vecW(1:M), &
vecW(IWB2:IWB2+M-1), vecW(IWB3:IWB3+M-1), &
vecW(IWW1:IWW1+M-1), vecW(IWW2:IWW2+M-1), &
vecW(IWW3::IWW3+M-1), vecW(IWD:IWD+M-1), &
vecW(IWTCOS:IWTCOS+4*N-1),vecW(IWP:),IW2)
GO TO 112
111 CONTINUE
IW2 = IW - IWP + 1
CALL POISN2 (M, N, 1, 1, vecW(IWBA:IWBA+M-1), vecW(IWBB:IWBB+M-1), &
vecW(IWBC::IWBC+M-1), matY, IDIMY, vecW(1:M), &
vecW(IWB2:IWW1+M-1), vecW(IWB3:IWB3+M-1), &
vecW(IWW1:IWW1+M-1), vecW(IWW2:IWW2+M-1), &
vecW(IWW3::IWW3+M-1), vecW(IWD:IWD+M-1), &
vecW(IWTCOS:IWTCOS+4*N-1),vecW(IWP:),IW2)
112 CONTINUE
IPSTOR = vecW(IWW1)
IREV = 2
IF (NPEROD == 4) GO TO 124
113 CONTINUE
GO TO (127,133) MP
114 CONTINUE
MH = (M + 1)/2
MHM1 = MH - 1
MODD = 1
IF (MH*2 == M) MODD = 2
DO J = 1, N
vecW(:MHM1) = matY(MH-1:MH-MHM1:(-1),J) - matY(MH+1:MHM1+MH,J)
vecW(MH+1:MHM1+MH) = matY(MH-1:MH-MHM1:(-1),J) + matY(MH+1:MHM1+MH,J)
vecW(MH) = TWO*matY(MH,J)
GO TO (117,116) MODD
116 CONTINUE
vecW(M) = TWO*matY(M,J)
117 CONTINUE
matY(:M,J) = vecW(:M)
END DO
K = IWBC + MHM1 - 1
I = IWBA + MHM1
vecW(K) = ZERO
vecW(I) = ZERO
vecW(K+1) = TWO*vecW(K+1)
SELECT CASE (MODD)
CASE DEFAULT
K = IWBB + MHM1 - 1
vecW(K) = vecW(K) - vecW(I-1)
vecW(IWBC-1) = vecW(IWBC-1) + vecW(IWBB-1)
CASE (2)
vecW(IWBB-1) = vecW(K+1)
END SELECT
GO TO 107
!
! REVERSE COLUMNS WHEN NPEROD = 4.
!
123 CONTINUE
IREV = 1
NBY2 = N/2
124 CONTINUE
DO J = 1, NBY2
MSKIP = N + 1 - J
DO I = 1, M
A1 = matY(I,J)
matY(I,J) = matY(I,MSKIP)
matY(I,MSKIP) = A1
END DO
END DO
GO TO (110,113) IREV
127 CONTINUE
DO J = 1, N
vecW(MH-1:MH-MHM1:(-1)) = HALF*(matY(MH+1:MHM1+MH,J)+matY(:MHM1,J))
vecW(MH+1:MHM1+MH) = HALF*(matY(MH+1:MHM1+MH,J)-matY(:MHM1,J))
vecW(MH) = HALF*matY(MH,J)
GO TO (130,129) MODD
129 CONTINUE
vecW(M) = HALF*matY(M,J)
130 CONTINUE
matY(:M,J) = vecW(:M)
END DO
133 CONTINUE
vecW(1) = IPSTOR + IWP - 1
RETURN
END SUBROUTINE GENBUNN
SUBROUTINE POISD2(MR,NR,ISTAG,vecBA,vecBB,vecBC,matY,IDIMY, &
vecB,vecW,vecD,TCOS,vecP,IDIMP)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: MR, NR, ISTAG, IDIMY,IDIMP
DOUBLE PRECISION, DIMENSION(MR), INTENT(IN) :: vecBA, vecBB, &
vecBC
DOUBLE PRECISION, DIMENSION(IDIMY,NR),INTENT(INOUT) :: matY
DOUBLE PRECISION, DIMENSION(MR), INTENT(INOUT) :: vecB, vecD, vecW
DOUBLE PRECISION, DIMENSION(4*NR), INTENT(INOUT) :: TCOS
DOUBLE PRECISION, DIMENSION(IDIMP), INTENT(INOUT) :: vecP
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER :: M, N, JSH, IP, IPSTOR, KR, IRREG, JSTSAV, I, LR, NUN, &
JST, JSP, L, NODD, J, JM1, JP1, JM2, JP2, JM3, JP3, &
NODDPR, KRPI, IDEG, JDEG
DOUBLE PRECISION :: FI, T
!-----------------------------------------------
!
! SUBROUTINE TO SOLVE POISSON'S EQUATION FOR DIRICHLET BOUNDARY
! CONDITIONS.
!
! ISTAG = 1 IF THE LAST DIAGONAL BLOCK IS THE MATRIX A.
! ISTAG = 2 IF THE LAST DIAGONAL BLOCK IS THE MATRIX A+I.
!
M = MR
N = NR
JSH = 0
FI = ONE/FLOAT(ISTAG)
IP = -M
IPSTOR = 0
SELECT CASE (ISTAG)
CASE DEFAULT
KR = 0
IRREG = 1
IF (N > 1) GO TO 106
TCOS(1) = ZERO
CASE (2)
KR = 1
JSTSAV = 1
IRREG = 2
IF (N > 1) GO TO 106
TCOS(1) = -ONE
END SELECT
vecB(:M) = matY(:M,1)
CALL TRIX (1, 0, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
matY(:M,1) = vecB(:M)
GO TO 183
106 CONTINUE
LR = 0
vecP(:M) = ZERO
NUN = N
JST = 1
JSP = N
!
! IRREG = 1 WHEN NO IRREGULARITIES HAVE OCCURRED, OTHERWISE IT IS 2.
!
108 CONTINUE
L = 2*JST
NODD = 2 - 2*((NUN + 1)/2) + NUN
!
! NODD = 1 WHEN NUN IS ODD, OTHERWISE IT IS 2.
!
SELECT CASE (NODD)
CASE DEFAULT
JSP = JSP - L
CASE (1)
JSP = JSP - JST
IF (IRREG /= 1) JSP = JSP - L
END SELECT
CALL COSGEN (JST, 1, HALF, ZERO, TCOS, 4*NR)
IF (L <= JSP) THEN
DO J = L, JSP, L
JM1 = J - JSH
JP1 = J + JSH
JM2 = J - JST
JP2 = J + JST
JM3 = JM2 - JSH
JP3 = JP2 + JSH
IF (JST == 1) THEN
vecB(:M) = TWO*matY(:M,J)
matY(:M,J) = matY(:M,JM2) + matY(:M,JP2)
ELSE
DO I = 1, M
T = matY(I,J) - matY(I,JM1) - matY(I,JP1) + matY(I,JM2) + &
matY(I,JP2)
vecB(I) = T + matY(I,J) - matY(I,JM3) - matY(I,JP3)
matY(I,J) = T
END DO
ENDIF
CALL TRIX (JST, 0, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
matY(:M,J) = matY(:M,J) + vecB(:M)
END DO
ENDIF
!
! REDUCTION FOR LAST UNKNOWN
!
SELECT CASE (NODD)
CASE DEFAULT
GO TO (152,120) IRREG
!
! ODD NUMBER OF UNKNOWNS
!
120 CONTINUE
JSP = JSP + L
J = JSP
JM1 = J - JSH
JP1 = J + JSH
JM2 = J - JST
JP2 = J + JST
JM3 = JM2 - JSH
GO TO (123,121) ISTAG
121 CONTINUE
IF (JST /= 1) GO TO 123
vecB(:M) = matY(:M,J)
matY(:M,J) = ZERO
GO TO 130
123 CONTINUE
SELECT CASE (NODDPR)
CASE DEFAULT
vecB(:M) = HALF*(matY(:M,JM2)-matY(:M,JM1)-matY(:M,JM3)) + &
vecP(IP+1:M+IP)+ matY(:M,J)
CASE (2)
vecB(:M) = HALF*(matY(:M,JM2)-matY(:M,JM1)-matY(:M,JM3)) + &
matY(:M,JP2) - matY(:M,JP1) + matY(:M,J)
END SELECT
matY(:M,J) = HALF*(matY(:M,J)-matY(:M,JM1)-matY(:M,JP1))
130 CONTINUE
CALL TRIX (JST, 0, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
IP = IP + M
IPSTOR = MAX0(IPSTOR,IP + M)
vecP(IP+1:M+IP) = matY(:M,J) + vecB(:M)
vecB(:M) = matY(:M,JP2) + vecP(IP+1:M+IP)
IF (LR == 0) THEN
DO I = 1, JST
KRPI = KR + I
TCOS(KRPI) = TCOS(I)
END DO
ELSE
CALL COSGEN (LR, JSTSAV, ZERO, FI, TCOS(JST+1), 4*NR-JST)
CALL MERGE (TCOS, 0, JST, JST, LR, KR, 4*NR)
ENDIF
CALL COSGEN (KR, JSTSAV, ZERO, FI, TCOS, 4*NR)
CALL TRIX (KR, KR, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
matY(:M,J) = matY(:M,JM2) + vecB(:M) + vecP(IP+1:M+IP)
LR = KR
KR = KR + L
!
! EVEN NUMBER OF UNKNOWNS
!
CASE (2)
JSP = JSP + L
J = JSP
JM1 = J - JSH
JP1 = J + JSH
JM2 = J - JST
JP2 = J + JST
JM3 = JM2 - JSH
SELECT CASE (IRREG)
CASE DEFAULT
JSTSAV = JST
IDEG = JST
KR = L
CASE (2)
CALL COSGEN (KR, JSTSAV, ZERO, FI, TCOS, 4*NR)
CALL COSGEN (LR, JSTSAV, ZERO, FI, TCOS(KR+1), 4*NR-KR)
IDEG = KR
KR = KR + JST
END SELECT
IF (JST == 1) THEN
IRREG = 2
vecB(:M) = matY(:M,J)
matY(:M,J) = matY(:M,JM2)
ELSE
vecB(:M) = matY(:M,J) + HALF*(matY(:M,JM2)-matY(:M,JM1)- &
matY(:M,JM3))
SELECT CASE (IRREG)
CASE DEFAULT
matY(:M,J) = matY(:M,JM2) + HALF*(matY(:M,J)- &
matY(:M,JM1)-matY(:M,JP1))
IRREG = 2
CASE (2)
SELECT CASE (NODDPR)
CASE DEFAULT
matY(:M,J) = matY(:M,JM2) + vecP(IP+1:M+IP)
IP = IP - M
CASE (2)
matY(:M,J) = matY(:M,JM2) + matY(:M,J) - matY(:M,JM1)
END SELECT
END SELECT
ENDIF
CALL TRIX (IDEG, LR, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
matY(:M,J) = matY(:M,J) + vecB(:M)
END SELECT
152 CONTINUE
NUN = NUN/2
NODDPR = NODD
JSH = JST
JST = 2*JST
IF (NUN >= 2) GO TO 108
!
! START SOLUTION.
!
J = JSP
vecB(:M) = matY(:M,J)
SELECT CASE (IRREG)
CASE DEFAULT
CALL COSGEN (JST, 1, HALF, ZERO, TCOS, 4*NR)
IDEG = JST
CASE (2)
KR = LR + JST
CALL COSGEN (KR, JSTSAV, ZERO, FI, TCOS, 4*NR)
CALL COSGEN (LR, JSTSAV, ZERO, FI, TCOS(KR+1), 4*NR-KR)
IDEG = KR
END SELECT
CALL TRIX (IDEG, LR, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
JM1 = J - JSH
JP1 = J + JSH
SELECT CASE (IRREG)
CASE DEFAULT
matY(:M,J) = HALF*(matY(:M,J)-matY(:M,JM1)-matY(:M,JP1)) + vecB(:M)
CASE (2)
SELECT CASE (NODDPR)
CASE DEFAULT
matY(:M,J) = vecP(IP+1:M+IP) + vecB(:M)
IP = IP - M
CASE (2)
matY(:M,J) = matY(:M,J) - matY(:M,JM1) + vecB(:M)
END SELECT
END SELECT
164 CONTINUE
JST = JST/2
JSH = JST/2
NUN = 2*NUN
IF (NUN > N) GO TO 183
DO J = JST, N, L
JM1 = J - JSH
JP1 = J + JSH
JM2 = J - JST
JP2 = J + JST
IF (J <= JST) THEN
vecB(:M) = matY(:M,J) + matY(:M,JP2)
ELSE
IF (JP2 <= N) GO TO 168
vecB(:M) = matY(:M,J) + matY(:M,JM2)
IF (JST < JSTSAV) IRREG = 1
GO TO (170,171) IRREG
168 CONTINUE
vecB(:M) = matY(:M,J) + matY(:M,JM2) + matY(:M,JP2)
ENDIF
170 CONTINUE
CALL COSGEN (JST, 1, HALF, ZERO, TCOS, 4*NR)
IDEG = JST
JDEG = 0
GO TO 172
171 CONTINUE
IF (J + L > N) LR = LR - JST
KR = JST + LR
CALL COSGEN (KR, JSTSAV, ZERO, FI, TCOS, 4*NR)
CALL COSGEN (LR, JSTSAV, ZERO, FI, TCOS(KR+1), 4*NR-KR)
IDEG = KR
JDEG = LR
172 CONTINUE
CALL TRIX (IDEG, JDEG, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
IF (JST <= 1) THEN
matY(:M,J) = vecB(:M)
ELSE
IF (JP2 > N) GO TO 177
175 CONTINUE
matY(:M,J) = HALF*(matY(:M,J)-matY(:M,JM1)-matY(:M,JP1)) + vecB(:M)
CYCLE
177 CONTINUE
GO TO (175,178) IRREG
178 CONTINUE
IF (J + JSH <= N) THEN
matY(:M,J) = vecB(:M) + vecP(IP+1:M+IP)
IP = IP - M
ELSE
matY(:M,J) = vecB(:M) + matY(:M,J) - matY(:M,JM1)
ENDIF
ENDIF
END DO
L = L/2
GO TO 164
183 CONTINUE
vecW(1) = IPSTOR
RETURN
END SUBROUTINE POISD2
SUBROUTINE POISN2(M, N, ISTAG, MIXBND, vecA, vecBB, vecC, &
matQ, IDIMQ, vecB, vecB2,vecB3, &
vecW, vecW2, vecW3, vecD, TCOS, vecP, IDIMP)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: M, N, ISTAG, MIXBND, IDIMQ,IDIMP
DOUBLE PRECISION, DIMENSION(M), INTENT(IN) :: vecA, vecBB, vecC
DOUBLE PRECISION, DIMENSION(IDIMQ,N), INTENT(INOUT) :: matQ
DOUBLE PRECISION, DIMENSION(M),INTENT(INOUT) :: vecB, vecB2, vecB3, &
vecD, vecW, vecW2, vecW3
DOUBLE PRECISION, DIMENSION(IDIMP),INTENT(INOUT) :: vecP
DOUBLE PRECISION, DIMENSION(4*N),INTENT(INOUT) :: TCOS
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER, DIMENSION(4) :: K
INTEGER :: K1, K2, K3, K4, MR, IP, IPSTOR, I2R, JR, NR, NLAST, &
KR, LR, I, NROD, JSTART, JSTOP, I2RBY2, &
J, JP1, JP2, JP3, JM1,JM2, JM3, NRODPR, II, I1, I2, &
JR2, NLASTP, JSTEP
DOUBLE PRECISION :: FISTAG, FNUM, FDEN, FI, T
!-----------------------------------------------
!
! SUBROUTINE TO SOLVE POISSON'S EQUATION WITH NEUMANN BOUNDARY
! CONDITIONS.
!
! ISTAG = 1 IF THE LAST DIAGONAL BLOCK IS A.
! ISTAG = 2 IF THE LAST DIAGONAL BLOCK IS A-I.
! MIXBND = 1 IF HAVE NEUMANN BOUNDARY CONDITIONS AT BOTH BOUNDARIES.
! MIXBND = 2 IF HAVE NEUMANN BOUNDARY CONDITIONS AT BOTTOM AND
! DIRICHLET CONDITION AT TOP. (FOR THIS CASE, MUST HAVE ISTAG = 1.)
!
EQUIVALENCE (K(1), K1), (K(2), K2), (K(3), K3), (K(4), K4)
FISTAG = 3 - ISTAG
FNUM = ONE/FLOAT(ISTAG)
FDEN = HALF*FLOAT(ISTAG - 1)
MR = M
IP = -MR
IPSTOR = 0
I2R = 1
JR = 2
NR = N
NLAST = N
KR = 1
LR = 0
GO TO (101,103) ISTAG
101 CONTINUE
matQ(:MR,N) = HALF*matQ(:MR,N)
GO TO (103,104) MIXBND
103 CONTINUE
IF (N <= 3) GO TO 155
104 CONTINUE
JR = 2*I2R
NROD = 1
IF ((NR/2)*2 == NR) NROD = 0
SELECT CASE (MIXBND)
CASE DEFAULT
JSTART = 1
CASE (2)
JSTART = JR
NROD = 1 - NROD
END SELECT
JSTOP = NLAST - JR
IF (NROD == 0) JSTOP = JSTOP - I2R
CALL COSGEN (I2R, 1, HALF, ZERO, TCOS, 4*NR)
I2RBY2 = I2R/2
IF (JSTOP < JSTART) THEN
J = JR
ELSE
DO J = JSTART, JSTOP, JR
JP1 = J + I2RBY2
JP2 = J + I2R
JP3 = JP2 + I2RBY2
JM1 = J - I2RBY2
JM2 = J - I2R
JM3 = JM2 - I2RBY2
IF (J == 1) THEN
JM1 = JP1
JM2 = JP2
JM3 = JP3
ENDIF
IF (I2R == 1) THEN
IF (J == 1) JM2 = JP2
vecB(:MR) = TWO*matQ(:MR,J)
matQ(:MR,J) = matQ(:MR,JM2) + matQ(:MR,JP2)
ELSE
DO I = 1, MR
FI = matQ(I,J)
matQ(I,J)=matQ(I,J)-matQ(I,JM1)-matQ(I,JP1)+ &
matQ(I,JM2)+matQ(I,JP2)
vecB(I) = FI + matQ(I,J) - matQ(I,JM3) - matQ(I,JP3)
END DO
ENDIF
CALL TRIX (I2R, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
!
! END OF REDUCTION FOR REGULAR UNKNOWNS.
!
END DO
!
! BEGIN SPECIAL REDUCTION FOR LAST UNKNOWN.
!
J = JSTOP + JR
ENDIF
NLAST = J
JM1 = J - I2RBY2
JM2 = J - I2R
JM3 = JM2 - I2RBY2
IF (NROD /= 0) THEN
!
! ODD NUMBER OF UNKNOWNS
!
IF (I2R == 1) THEN
vecB(:MR) = FISTAG*matQ(:MR,J)
matQ(:MR,J) = matQ(:MR,JM2)
ELSE
vecB(:MR) = matQ(:MR,J) + HALF*(matQ(:MR,JM2)- &
matQ(:MR,JM1)-matQ(:MR,JM3))
IF (NRODPR == 0) THEN
matQ(:MR,J) = matQ(:MR,JM2) + vecP(IP+1:MR+IP)
IP = IP - MR
ELSE
matQ(:MR,J) = matQ(:MR,J) - matQ(:MR,JM1) + matQ(:MR,JM2)
ENDIF
IF (LR /= 0) THEN
CALL COSGEN (LR, 1, HALF, FDEN, TCOS(KR+1), 4*NR-KR)
ELSE
vecB(:MR) = FISTAG*vecB(:MR)
ENDIF
ENDIF
CALL COSGEN (KR, 1, HALF, FDEN, TCOS, 4*NR)
CALL TRIX (KR, LR, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
KR = KR + I2R
ELSE
JP1 = J + I2RBY2
JP2 = J + I2R
IF (I2R == 1) THEN
vecB(:MR) = matQ(:MR,J)
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
IP = 0
IPSTOR = MR
SELECT CASE (ISTAG)
CASE DEFAULT
vecP(:MR) = vecB(:MR)
vecB(:MR) = vecB(:MR) + matQ(:MR,N)
TCOS(1) = ONE
TCOS(2) = ZERO
CALL TRIX (1, 1, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,J) = matQ(:MR,JM2) + vecP(:MR) + vecB(:MR)
GO TO 150
CASE (1)
vecP(:MR) = vecB(:MR)
matQ(:MR,J) = matQ(:MR,JM2) + TWO*matQ(:MR,JP2) + 3.*vecB(:MR)
GO TO 150
END SELECT
ENDIF
vecB(:MR) = matQ(:MR,J) + HALF*(matQ(:MR,JM2)- &
matQ(:MR,JM1)-matQ(:MR,JM3))
IF (NRODPR == 0) THEN
vecB(:MR) = vecB(:MR) + vecP(IP+1:MR+IP)
ELSE
vecB(:MR) = vecB(:MR) + matQ(:MR,JP2) - matQ(:MR,JP1)
ENDIF
CALL TRIX (I2R, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
IP = IP + MR
IPSTOR = MAX0(IPSTOR,IP + MR)
vecP(IP+1:MR+IP) = vecB(:MR) + HALF*(matQ(:MR,J)- &
matQ(:MR,JM1)-matQ(:MR,JP1))
vecB(:MR) = vecP(IP+1:MR+IP) + matQ(:MR,JP2)
IF (LR /= 0) THEN
CALL COSGEN (LR, 1, HALF, FDEN, TCOS(I2R+1), 4*NR-I2R)
CALL MERGE (TCOS, 0, I2R, I2R, LR, KR, 4*NR)
ELSE
DO I = 1, I2R
II = KR + I
TCOS(II) = TCOS(I)
END DO
ENDIF
CALL COSGEN (KR, 1, HALF, FDEN, TCOS, 4*NR)
IF (LR == 0) THEN
GO TO (146,145) ISTAG
ENDIF
145 CONTINUE
CALL TRIX (KR, KR, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
GO TO 148
146 CONTINUE
vecB(:MR) = FISTAG*vecB(:MR)
148 CONTINUE
matQ(:MR,J) = matQ(:MR,JM2) + vecP(IP+1:MR+IP) + vecB(:MR)
150 CONTINUE
LR = KR
KR = KR + JR
ENDIF
SELECT CASE (MIXBND)
CASE DEFAULT
NR = (NLAST - 1)/JR + 1
IF (NR <= 3) GO TO 155
CASE (2)
NR = NLAST/JR
IF (NR <= 1) GO TO 192
END SELECT
I2R = JR
NRODPR = NROD
GO TO 104
155 CONTINUE
J = 1 + JR
JM1 = J - I2R
JP1 = J + I2R
JM2 = NLAST - I2R
IF (NR /= 2) THEN
IF (LR /= 0) GO TO 170
IF (N == 3) THEN
!
! CASE N = 3.
!
GO TO (156,168) ISTAG
156 CONTINUE
vecB(:MR) = matQ(:MR,2)
TCOS(1) = ZERO
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,2) = vecB(:MR)
vecB(:MR) = 4.*vecB(:MR) + matQ(:MR,1) + TWO*matQ(:MR,3)
TCOS(1) = -TWO
TCOS(2) = TWO
I1 = 2
I2 = 0
CALL TRIX (I1, I2, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,2) = matQ(:MR,2) + vecB(:MR)
vecB(:MR) = matQ(:MR,1) + TWO*matQ(:MR,2)
TCOS(1) = ZERO
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,1) = vecB(:MR)
JR = 1
I2R = 0
GO TO 194
ENDIF
!
! CASE N = 2**P+1
!
GO TO (162,170) ISTAG
162 CONTINUE
vecB(:MR) = matQ(:MR,J) + HALF*matQ(:MR,1) - &
matQ(:MR,JM1) + matQ(:MR,NLAST) - matQ(:MR,JM2)
CALL COSGEN (JR, 1, HALF, ZERO, TCOS, 4*NR)
CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,J) = HALF*(matQ(:MR,J)-matQ(:MR,JM1)-matQ(:MR,JP1)) + vecB(:MR)
vecB(:MR) = matQ(:MR,1) + TWO*matQ(:MR,NLAST) + 4.*matQ(:MR,J)
JR2 = 2*JR
CALL COSGEN (JR, 1, ZERO, ZERO, TCOS, 4*NR)
TCOS(JR+1:JR*2) = -TCOS(JR:1:(-1))
CALL TRIX (JR2, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
vecB(:MR) = matQ(:MR,1) + TWO*matQ(:MR,J)
CALL COSGEN (JR, 1, HALF, ZERO, TCOS, 4*NR)
CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,1) = HALF*matQ(:MR,1) - matQ(:MR,JM1) + vecB(:MR)
GO TO 194
!
! CASE OF GENERAL N WITH NR = 3 .
!
168 CONTINUE
vecB(:MR) = matQ(:MR,2)
matQ(:MR,2) = ZERO
vecB2(:MR) = matQ(:MR,3)
vecB3(:MR) = matQ(:MR,1)
JR = 1
I2R = 0
J = 2
GO TO 177
170 CONTINUE
vecB(:MR) = HALF*matQ(:MR,1) - matQ(:MR,JM1) + matQ(:MR,J)
IF (NROD == 0) THEN
vecB(:MR) = vecB(:MR) + vecP(IP+1:MR+IP)
ELSE
vecB(:MR) = vecB(:MR) + matQ(:MR,NLAST) - matQ(:MR,JM2)
ENDIF
DO I = 1, MR
T = HALF*(matQ(I,J)-matQ(I,JM1)-matQ(I,JP1))
matQ(I,J) = T
vecB2(I) = matQ(I,NLAST) + T
vecB3(I) = matQ(I,1) + TWO*T
END DO
177 CONTINUE
K1 = KR + 2*JR - 1
K2 = KR + JR
TCOS(K1+1) = -TWO
K4 = K1 + 3 - ISTAG
CALL COSGEN (K2 + ISTAG - 2, 1, ZERO, FNUM, TCOS(K4), 4*NR-K4+1)
K4 = K1 + K2 + 1
CALL COSGEN (JR - 1, 1, ZERO, ONE, TCOS(K4), 4*NR-K4+1)
CALL MERGE (TCOS, K1, K2, K1 + K2, JR - 1, 0, 4*NR)
K3 = K1 + K2 + LR
CALL COSGEN (JR, 1, HALF, ZERO, TCOS(K3+1), 4*NR-K3)
K4 = K3 + JR + 1
CALL COSGEN (KR, 1, HALF, FDEN, TCOS(K4), 4*NR-K4+1)
CALL MERGE (TCOS, K3, JR, K3 + JR, KR, K1, 4*NR)
IF (LR /= 0) THEN
CALL COSGEN (LR, 1, HALF, FDEN, TCOS(K4), 4*NR-K4+1)
CALL MERGE (TCOS, K3, JR, K3 + JR, LR, K3 - LR, 4*NR)
CALL COSGEN (KR, 1, HALF, FDEN, TCOS(K4), 4*NR-K4+1)
ENDIF
K3 = KR
K4 = KR
CALL TRI3 (MR, vecA, vecBB, vecC, K, vecB, vecB2, vecB3, &
TCOS, 4*NR, vecD, vecW, vecW2, vecW3)
vecB(:MR) = vecB(:MR) + vecB2(:MR) + vecB3(:MR)
TCOS(1) = TWO
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
vecB(:MR) = matQ(:MR,1) + TWO*matQ(:MR,J)
CALL COSGEN (JR, 1, HALF, ZERO, TCOS, 4*NR)
CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
IF (JR == 1) THEN
matQ(:MR,1) = vecB(:MR)
GO TO 194
ENDIF
matQ(:MR,1) = HALF*matQ(:MR,1) - matQ(:MR,JM1) + vecB(:MR)
GO TO 194
ENDIF
IF (N == 2) THEN
!
! CASE N = 2
!
vecB(:MR) = matQ(:MR,1)
TCOS(1) = ZERO
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,1) = vecB(:MR)
vecB(:MR) = TWO*(matQ(:MR,2)+vecB(:MR))*FISTAG
TCOS(1) = -FISTAG
TCOS(2) = TWO
CALL TRIX (2, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,1) = matQ(:MR,1) + vecB(:MR)
JR = 1
I2R = 0
GO TO 194
ENDIF
vecB3(:MR) = ZERO
vecB(:MR) = matQ(:MR,1) + TWO*vecP(IP+1:MR+IP)
matQ(:MR,1) = HALF*matQ(:MR,1) - matQ(:MR,JM1)
vecB2(:MR) = TWO*(matQ(:MR,1)+matQ(:MR,NLAST))
K1 = KR + JR - 1
TCOS(K1+1) = -TWO
K4 = K1 + 3 - ISTAG
CALL COSGEN (KR + ISTAG - 2, 1, ZERO, FNUM, TCOS(K4), 4*NR-K4+1)
K4 = K1 + KR + 1
CALL COSGEN (JR - 1, 1, ZERO, ONE, TCOS(K4), 4*NR-K4+1)
CALL MERGE (TCOS, K1, KR, K1 + KR, JR - 1, 0, 4*NR)
CALL COSGEN (KR, 1, HALF, FDEN, TCOS(K1+1), 4*NR-K1)
K2 = KR
K4 = K1 + K2 + 1
CALL COSGEN (LR, 1, HALF, FDEN, TCOS(K4), 4*NR-K4+1)
K3 = LR
K4 = 0
CALL TRI3 (MR, vecA, vecBB, vecC, K, vecB, vecB2, vecB3, TCOS, &
4*NR, vecD, vecW, vecW2, vecW3)
vecB(:MR) = vecB(:MR) + vecB2(:MR)
TCOS(1) = TWO
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,1) = matQ(:MR,1) + vecB(:MR)
GO TO 194
192 CONTINUE
vecB(:MR) = matQ(:MR,NLAST)
GO TO 196
194 CONTINUE
J = NLAST - JR
vecB(:MR) = matQ(:MR,NLAST) + matQ(:MR,J)
196 CONTINUE
JM2 = NLAST - I2R
IF (JR == 1) THEN
matQ(:MR,NLAST) = ZERO
ELSE
IF (NROD == 0) THEN
matQ(:MR,NLAST) = vecP(IP+1:MR+IP)
IP = IP - MR
ELSE
matQ(:MR,NLAST) = matQ(:MR,NLAST) - matQ(:MR,JM2)
ENDIF
ENDIF
CALL COSGEN (KR, 1, HALF, FDEN, TCOS, 4*NR)
CALL COSGEN (LR, 1, HALF, FDEN, TCOS(KR+1), 4*NR-KR)
IF (LR == 0) THEN
vecB(:MR) = FISTAG*vecB(:MR)
ENDIF
CALL TRIX (KR, LR, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,NLAST) = matQ(:MR,NLAST) + vecB(:MR)
NLASTP = NLAST
206 CONTINUE
JSTEP = JR
JR = I2R
I2R = I2R/2
IF (JR == 0) GO TO 222
SELECT CASE (MIXBND)
CASE DEFAULT
JSTART = 1 + JR
CASE (2)
JSTART = JR
END SELECT
KR = KR - JR
IF (NLAST + JR <= N) THEN
KR = KR - JR
NLAST = NLAST + JR
JSTOP = NLAST - JSTEP
ELSE
JSTOP = NLAST - JR
ENDIF
LR = KR - JR
CALL COSGEN (JR, 1, HALF, ZERO, TCOS, 4*NR)
DO J = JSTART, JSTOP, JSTEP
JM2 = J - JR
JP2 = J + JR
IF (J == JR) THEN
vecB(:MR) = matQ(:MR,J) + matQ(:MR,JP2)
ELSE
vecB(:MR) = matQ(:MR,J) + matQ(:MR,JM2) + matQ(:MR,JP2)
ENDIF
IF (JR == 1) THEN
matQ(:MR,J) = ZERO
ELSE
JM1 = J - I2R
JP1 = J + I2R
matQ(:MR,J) = HALF*(matQ(:MR,J)-matQ(:MR,JM1)-matQ(:MR,JP1))
ENDIF
CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
END DO
NROD = 1
IF (NLAST + I2R <= N) NROD = 0
IF (NLASTP /= NLAST) GO TO 194
GO TO 206
222 CONTINUE
vecW(1) = IPSTOR
RETURN
END SUBROUTINE POISN2
SUBROUTINE POISP2(M, N, vecA, vecBB, vecC, matQ, IDIMQ, &
vecB, vecB2, vecB3, vecW, vecW2, vecW3, &
vecD, TCOS, vecP, IP)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: M, N, IDIMQ, IP
DOUBLE PRECISION, DIMENSION(M), INTENT(IN) :: vecA, vecBB, vecC
DOUBLE PRECISION, DIMENSION(4*N), INTENT(INOUT) :: TCOS
DOUBLE PRECISION, DIMENSION(IDIMQ,N), INTENT(INOUT) :: matQ
DOUBLE PRECISION, DIMENSION(IP),INTENT(INOUT) :: vecP
DOUBLE PRECISION, DIMENSION(M),INTENT(INOUT) :: vecB, vecB2, vecB3, &
vecD, vecW, vecW2, vecW3
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER :: MR, NR, NRM1, J, NRMJ, NRPJ, I, IPSTOR, LH
DOUBLE PRECISION :: S, T
!-----------------------------------------------
!
! SUBROUTINE TO SOLVE POISSON EQUATION WITH PERIODIC BOUNDARY
! CONDITIONS.
!
MR = M
NR = (N + 1)/2
NRM1 = NR - 1
IF (2*NR == N) THEN
!
! EVEN NUMBER OF UNKNOWNS
!
DO J = 1, NRM1
NRMJ = NR - J
NRPJ = NR + J
DO I = 1, MR
S = matQ(I,NRMJ) - matQ(I,NRPJ)
T = matQ(I,NRMJ) + matQ(I,NRPJ)
matQ(I,NRMJ) = S
matQ(I,NRPJ) = T
END DO
END DO
matQ(:MR,NR) = TWO*matQ(:MR,NR)
matQ(:MR,N) = TWO*matQ(:MR,N)
CALL POISD2 (MR, NRM1, 1, vecA, vecBB, vecC, matQ, IDIMQ, &
vecB, vecW, vecD, TCOS, vecP, IP)
IPSTOR = vecW(1)
CALL POISN2 (MR, NR + 1, 1, 1, vecA, vecBB, vecC, matQ(:,NR:), &
IDIMQ, vecB, vecB2, vecB3, vecW, vecW2, vecW3, vecD, &
TCOS, vecP, IP)
IPSTOR = MAX0(IPSTOR,INT(vecW(1)))
DO J = 1, NRM1
NRMJ = NR - J
NRPJ = NR + J
DO I = 1, MR
S = HALF*(matQ(I,NRPJ)+matQ(I,NRMJ))
T = HALF*(matQ(I,NRPJ)-matQ(I,NRMJ))
matQ(I,NRMJ) = S
matQ(I,NRPJ) = T
END DO
END DO
matQ(:MR,NR) = HALF*matQ(:MR,NR)
matQ(:MR,N) = HALF*matQ(:MR,N)
ELSE
DO J = 1, NRM1
NRPJ = N + 1 - J
DO I = 1, MR
S = matQ(I,J) - matQ(I,NRPJ)
T = matQ(I,J) + matQ(I,NRPJ)
matQ(I,J) = S
matQ(I,NRPJ) = T
END DO
END DO
matQ(:MR,NR) = TWO*matQ(:MR,NR)
LH = NRM1/2
DO J = 1, LH
NRMJ = NR - J
DO I = 1, MR
S = matQ(I,J)
matQ(I,J) = matQ(I,NRMJ)
matQ(I,NRMJ) = S
END DO
END DO
CALL POISD2 (MR, NRM1, 2, vecA, vecBB, vecC, matQ, IDIMQ, &
vecB, vecW, vecD, TCOS, vecP, IP)
IPSTOR = vecW(1)
CALL POISN2 (MR, NR, 2, 1, vecA, vecBB, vecC, matQ(:,NR:), IDIMQ, &
vecB, vecB2, vecB3, vecW, vecW2, vecW3, vecD, TCOS, &
vecP, IP)
IPSTOR = MAX0(IPSTOR,INT(vecW(1)))
DO J = 1, NRM1
NRPJ = NR + J
DO I = 1, MR
S = HALF*(matQ(I,NRPJ)+matQ(I,J))
T = HALF*(matQ(I,NRPJ)-matQ(I,J))
matQ(I,NRPJ) = T
matQ(I,J) = S
END DO
END DO
matQ(:MR,NR) = HALF*matQ(:MR,NR)
DO J = 1, LH
NRMJ = NR - J
DO I = 1, MR
S = matQ(I,J)
matQ(I,J) = matQ(I,NRMJ)
matQ(I,NRMJ) = S
END DO
END DO
ENDIF
vecW(1) = IPSTOR
!
! REVISION HISTORY---
!
! SEPTEMBER 1973 VERSION 1
! APRIL 1976 VERSION 2
! JANUARY 1978 VERSION 3
! DECEMBER 1979 VERSION 3.1
! FEBRUARY 1985 DOCUMENTATION UPGRADE
! NOVEMBER 1988 VERSION 3.2, FORTRAN 77 CHANGES
! June 2004 Version 5.0, Fortran 90 changes
!-----------------------------------------------------------------------
END SUBROUTINE POISP2
|