Files
@ 215974bd7440
Branch filter:
Location: MD/arcos/src/cstream.c
215974bd7440
12.2 KiB
text/x-csrc
Edited file README via RhodeCode
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | /** @file cstream.c
* @brief General initialization/termination functions.
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#define ALLOC_PARAMS
#include "cstream.h"
#include "parameters.h"
#include "proto.h"
#include "species.h"
double E_x, E_y, E_z;
/**< For time-dependent electric fields E_x, E_y, E_z there is a difference between
E0 (the highest field) and E (the field at a given time). */
extern double pois_inhom_fixed_q_t;
/**< The same is true for time-dependent fixed charges (useful to model
the charging of a cloud in modeling sprites. */
double *dr, *dz, dtheta;
/**< dr[i] and dz[i] represent the grid size at level @a i. Note that
@a i can go from -extra_pois_levels...max_levels. */
double *dr_start, *dz_start;
double *w2k, *wk;
/**< w2k[k] = 2 / dtheta^2 (1 - cos(k dtheta)). This numbers appear due to the
finite-differences derivatives of a Fourier transform. If we would make
a continuous fourier transform, they will approach k^2.
*/
char *invok_name = "cstream";
/**< Name of this program. */
const double twopi = 6.283185307179586477L;
/**< \f$ 2 \times \pi \f$. */
const double invfourpi = 0.079577471545947667884441882L;
/**< \f$ 1 / (4 \pi )\f$ */
const double invpi32 = 0.179587122125166561689081L;
/**< \f$ 1 / (\pi ^ {3/2} )\f$ */
/** @brief Initializes the parameters.
*
* The global parameters will get their default values.
* These values correspond with the values in input/defaults.cfg
*/
void
init_parameters(void)
{
debug (1, "entry init_parameters\n");
/* An identification name for this run */
prog_id = "example";
/* Output directory. */
output_dir = "output/";
/* Kinetics input file */
kin_input = "input/kinetic_example.cfg";
/* If restart is TRUE, the simulation will continue with data from a previous run */
restart = 0;
/* If restart is TRUE, the name of the file with data from previous run, otherwise empty */
load_file = "";
/* Time interval for output to be written to disk */
output_dt = 0.100;
/* Output of the Poisson grids, including the potential? */
pois_output = 0;
/* Margin outside the grids in the output of the cdr equation */
cdr_output_margin = 0;
/* Margin outside the grids in the output of the poisson equation */
pois_output_margin = 1;
/* If the time steps are smaller than this number, the program issues a warning */
warn_min_timestep = 1e-06;
/* Maximum disk space, in Mb, to use */
max_disk_space_mb = 1048576;
/* Number of R and Z gridpoints at level 0 */
gridpoints_r = 600;
gridpoints_z = 600;
/* Number of azimuthal gridcells and modes */
max_ntheta = 1;
/* Initial and end time */
start_t = 0.0;
end_t = 0.12;
/* Attempted timestep. The actual timestep may be larger */
attempt_dt = 50.0;
/* Extra levels for the Poisson solver */
extra_pois_levels = 2;
/* Maximum level of refinement. Use a big number here */
max_levels = 64;
/* Error threshold that leads to refinement in the Poisson code. */
pois_max_error = 0.001;
/* Maximum level of refinement in the Poisson equation. */
pois_max_level = 3;
/* Extra levels for the photo-ionization solver */
extra_photo_levels = -1;
/* Maximum level of refinement in the photo-ionization solver. */
photo_max_level = 4;
/* Error threshold that leads to refinement in the photo-ionization code. */
photo_max_error = 0.01;
/* Photo-ionization boundary condition at r = L_r, z = 0, z = L_z. 1 for Hom. Neumann, -1 for Hom. Dirichlet */
photo_bnd_right = -1;
photo_bnd_bottom = -1;
photo_bnd_top = -1;
/* Extra levels for the photo-ionization solver */
extra_photo_levels_2 = -1;
/* Maximum level of refinement in the photo-ionization solver. */
photo_max_level_2 = 4;
/* Error threshold that leads to refinement in the photo-ionization code. */
photo_max_error_2 = 0.01;
/* Photo-ionization boundary condition at r = L_r, z = 0, z = L_z. 1 for Hom. Neumann, -1 for Hom. Dirichlet */
photo_bnd_right_2 = -1;
photo_bnd_bottom_2 = -1;
photo_bnd_top_2 = -1;
/* Particles boundary condition at z = 0, z = L_z, r = L_r. 1 for Hom. Neumann, -1 for Hom. Dirichlet */
cdr_bnd_bottom = 1;
cdr_bnd_top = 1;
cdr_bnd_right = 1;
/* Potential boundary condition at r = L_r, z = 0, z = L_z. 1 for Hom. Neumann, -1 for Hom. Dirichlet */
pois_bnd_right = -1;
pois_bnd_bottom = -1;
pois_bnd_top = -1;
/* Maximum advection and diffusion Courant number */
nu_a = 0.2;
nu_d = 0.2;
/* Maximum ratio of dt/relaxation time */
nu_rt = 0.2;
/* Maximum ratio of change of the densities (set to a very large number to ignore) */
nu_f = 1e+20;
/* Refinement threshold for the electric field */
ref_threshold_eabs = 0.2;
/* Maximum refinement level reached through ref_threshold_eabs */
ref_level_eabs = 4;
/* Refinement threshold for the curvature of the charge, densities */
ref_threshold_charge = 0.004;
ref_threshold_dens = 0.004;
/* Refinement threshold for the densities in the leading edge */
ref_threshold_edge = 10000.0;
/* r-length and z-length of the minimal refinement area in the cdr equation */
cdr_brick_dr = 8;
cdr_brick_dz = 8;
/* Maximum level of refinement in the Fluid equation. */
cdr_max_level = 3;
/* Interpolation method for the grid interior, and grid boundaries (0=zero_masses, 1=quadratic_masses [default], 2=wackers_masses, 3=quadlog */
cdr_interp_in = 1;
cdr_interp_bnd = 1;
/* Length in r and z of the complete domain */
L_r = 13044.0;
L_z = 13044.0;
/* Isotropic difussion coefficient */
diffusion_coeff = 0.1;
/* Whether the code includes photoionization or not */
has_photoionization = 1;
/* The name of a file from which we can read the photoionization parameters */
photoionization_file = "input/air760torr.photo";
/* Rate of dissociative attachment */
attachment_rate = 0.0;
/* E0 in the exp(-E0/E) factor in the attachment expression. */
attachment_E0 = 0.0;
/* x-, y- and z-component of the external electric field */
E0_x = 0.0;
E0_y = 0.0;
E0_z = -0.06;
/* Rise time of the electric field (0 for instantaneous rise) */
rise_time = 0.0;
/* Time to switch off the electric field (0.0 means never) */
off_time = 0.0;
/* x-, y- and z-width of the initial seed */
seed_sigma_x = 0.0;
seed_sigma_y = 0.0;
seed_sigma_z = 0.0;
/* Number of electrons in the initial seed */
seed_N = 0.0;
/* Initial at z=0 densities of electrons and ions */
background_ionization = 0.0;
/* Length of exponential increase of the pre-ionization (for atmospherical models) */
background_increase_length = 0.0;
/* Use the point-plane geometry? */
pois_inhom = 1;
/* Number of mirror charges to use */
pois_inhom_reflections = 4;
/* Length and radius of the needle */
needle_length = 2500.0;
needle_radius = 400.0;
/* If nonzero, the charge is fixed, not floating (simulation of charged clouds close to the earth surface) */
pois_inhom_fixed_q = 0.0;
/* Constant ionization rate */
constant_source = 0.0;
/* Initial perturbation to the axisymmetric configuration */
perturb_epsilon = 0.0;
/* Perturb only modes up to perturb_max_k (large number to perturb all) */
perturb_max_k = 1024;
/* 1 if the sprite module is activated, 0 otherwise */
sprite_module = 0;
/* Lenght of exponential decay of the density w/r to altitude */
dens_decay_len = 0.0;
/* Density at z = 0 */
sprite_dens_0 = 0.0;
/* Quenching density */
sprite_dens_q = 0.0;
/* Sign of the sprite head that we are following (the other will not be reliable */
sprite_sign = -1;
debug (1, "exit init_parameters\n");
}
int n, i;
/** @brief Initializes the grid sizes. The parameters dr_root and dz_root
* specify the grid size at level 0 (dz_root = dz[0], dr_root[0] = dr[0])
*/
static void
init_gridsizes_a (void)
{
int n, i;
double root_dr, root_dz;
root_dr = L_r / gridpoints_r;
root_dz = L_z / gridpoints_z;
n = max_levels + extra_pois_levels + 1;
dr_start = (double *) xmalloc(sizeof(double) * n);
dz_start = (double *) xmalloc(sizeof(double) * n);
dr = dr_start + extra_pois_levels;
dz = dz_start + extra_pois_levels;
dr_start[0] = root_dr * (1 << extra_pois_levels);
dz_start[0] = root_dz * (1 << extra_pois_levels);
for (i = 1; i < n; i++) {
dr_start[i] = dr_start[i - 1] / 2.0;
dz_start[i] = dz_start[i - 1] / 2.0;
debug (3, "dr[%d] = %e\n", i - extra_pois_levels,
dr[i - extra_pois_levels]);
debug (3, "dz[%d] = %e\n", i - extra_pois_levels,
dz[i - extra_pois_levels]);
}
dtheta = twopi / max_ntheta;
}
/** @brief Initializes the vector of wk's for the Helmholtz equation. */
static void
init_wk_a (void)
{
int k;
double twobydtheta2;
debug (2, "init_w2k_a()\n");
w2k = (double*) xmalloc (sizeof(double) * max_ntheta);
wk = (double*) xmalloc (sizeof(double) * max_ntheta);
twobydtheta2 = 2. / (dtheta * dtheta);
for (k = 0; k < max_ntheta / 2 + (max_ntheta % 2); k++) {
double w2k_ = twobydtheta2 * (1 - cos (k * dtheta));
double re_wk, im_wk;
re_wk = (cos (k * dtheta) - 1) / dtheta;
im_wk = sin (k * dtheta) / dtheta;
wk[k] = re_wk;
w2k[k]= w2k_;
if (k != 0) {
wk[max_ntheta - k] = im_wk;
w2k[max_ntheta - k] = w2k_;
}
}
if ((max_ntheta % 2) == 0) {
w2k[max_ntheta / 2] = twobydtheta2 * (1 - cos (k * dtheta));
wk[max_ntheta / 2] = (cos (k * dtheta) - 1) / dtheta;
}
assert (wk[0] == 0.);
}
/** @brief Frees the space allocated for dr and dz. */
static void
free_gridsizes (void)
{
free (dr_start);
free (dz_start);
}
/** @brief Frees the allocated space for \f$ \lambda \f$. */
static void
free_wk (void)
{
free (wk);
free (w2k);
}
/** @brief Here all the initialization calls. */
void
cstream_init (void)
{
/* For the perturbations, it is better to start with different seeds at
each run. */
srand (time (0));
init_gridsizes_a ();
init_wk_a ();
react_init ();
cdr_init ();
pois_init ();
photo_init ();
if (has_photoionization) {
printf("Photoionization\n");
photo_load_file (photoionization_file);
} else {
printf("No photoionization\n");
}
if (sprite_module) spr_init ();
}
/** @brief Here all the cleaning and finishing calls. */
void
cstream_end (void)
{
photo_unregister_all ();
free_gridsizes ();
free_wk ();
cdr_end ();
}
/** @brief When we use a time-varying external field, we update the field
* components at each timesteps. */
void
cstream_set_field_at_time (double t)
{
static int rise_reached = FALSE, off_reached = FALSE;
double factor;
if (rise_reached && off_reached)
return;
if (t >= rise_time) {
rise_reached = TRUE;
}
if (t >= off_time || off_time == 0.0) {
off_reached = TRUE;
}
/* We make sure that we never use a field _larger_ than E0 and that
if rise_time is 0 we do not calculate t / 0.0. */
factor = t >= rise_time? 1.0: (t / rise_time);
factor = (off_time > 0.0 && t >= off_time)? 0.0: factor;
E_x = factor * E0_x;
E_y = factor * E0_y;
E_z = factor * E0_z;
if (pois_inhom_fixed_q != 0.0) {
pois_inhom_fixed_q_t = factor * pois_inhom_fixed_q;
}
return;
}
/** @brief Functions for a constant external electric field given in (x, y, z) components. */
double
e0_r (double r, double z, double theta)
{
return E_x * cos (theta) + E_y * sin (theta);
}
/** @brief Functions for a constant external electric field given in (x, y, z) components. */
double
e0_z (double r, double z, double theta)
{
return E_z;
}
/** @brief Functions for a constant external electric field given in (x, y, z) components. */
double
e0_theta (double r, double z, double theta)
{
return -E_x * cos (theta) + E_y * sin (theta);
}
/** Initializes the component of the external electric field in \f$r\f$-direction. */
decl_field_comp(r) = e0_r;
/** Initializes the component of the external electric field in \f$z\f$-direction. */
decl_field_comp(z) = e0_z;
/** Initializes the component of the external electric field in \f$\theta\f$-direction. */
decl_field_comp(theta) = e0_theta;
|