Files
@ a1222c33f175
Branch filter:
Location: MD/arcos/src/cdr.c
a1222c33f175
67.2 KiB
text/x-csrc
Edited file README via RhodeCode
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 | /** @file cdr.c
* @brief Routines for handling the CDR (convection-diffusion-reaction) equations
*
* Default interpolation methods.\n
* May be changed elsewhere.\n
* \n
* interpol_method_t *cdr_interpol_inside = \&interpol_quadratic;\n
* interpol_method_t *cdr_interpol_bnd = \&interpol_bilin;\n
* \n
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <sys/time.h>
#include "cdr.h"
#include "cstream.h"
#include "grid.h"
#include "interpol2.h"
#include "mapper.h"
#include "parameters.h"
#include "poisson.h"
#include "proto.h"
#include "react_table.h"
#include "rz_array.h"
#include "species.h"
#include "tree.h"
/** Declaration of the functions to interpolate the densities. */
decl_mapper_funcs(dens);
mapper_t **dens_mappers, **dens_bnd_mappers;
int cdr_ext_bnd_cond[4];
double z_cutoff = 10000000.0;
double max_err = 0.0;
react_table mu;
react_table diff;
extern pois_problem_t *pois_electrostatic;
static void set_all_bnd (cdr_grid_t *grid,
int sign, int ir, int iz, int itheta,
int dim0, int inout,
int dim1, int dim1_from, int dim1_to,
int dim2, int dim2_from, int dim2_to);
static void set_axis_bnd (cdr_grid_t *grid);
static void max_update (double *x, double cmp);
static double f_ad (rz_array_t *dens, double efield, double dc, double mc,
int ir, int iz, int itheta, int dim);
static double psi (double theta);
static void prepare_grid (cdr_grid_t *grid);
static double curv_at (cdr_grid_t *grid, rz_array_t *ar,
int ir, int iz, int itheta, double (*f) (double));
static int needs_refinement (cdr_grid_t *grid, int ir, int iz, int itheta,
int *in_edge);
static int any_needs_refinement (cdr_grid_t *grid, int ir, int iz,
int *in_edge);
static int brick_needs_refinement (cdr_grid_t *grid, int r0, int z0,
int r1, int z1, int *in_edge);
static void refine_in (cdr_grid_t *grid, int cr0, int cz0, int cr1, int cz1,
int contains_edge);
static void restrict_from (cdr_grid_t *parent, cdr_grid_t *child);
static int match_grids (cdr_grid_t *fro, cdr_grid_t *to);
double gauss2_xyz (double x, double y, double z);
int curr_seed = 0;
react_table mu;
react_table diff;
void aux_dump_frames_r (cdr_grid_t *grid, FILE *fp);
/** @brief Some initialization is needed for this module which has to be
* inside this function.
*/
void
cdr_init (void)
{
cdr_ext_bnd_cond[BND_BOTTOM] = cdr_bnd_bottom;
cdr_ext_bnd_cond[BND_TOP] = cdr_bnd_top;
cdr_ext_bnd_cond[BND_RIGHT] = cdr_bnd_right;
dens_mappers = cdr_mappers_a (interpol_methods_index[cdr_interp_in]);
dens_bnd_mappers = cdr_mappers_a (interpol_methods_index[cdr_interp_bnd]);
react_table_read("input/default.mobility",&mu);
react_table_read("input/default.diffusion",&diff);
}
/** @brief And the cleaning up has to be here. */
void
cdr_end (void)
{
cdr_free_mappers (dens_mappers);
cdr_free_mappers (dens_bnd_mappers);
}
/** @brief Creates a new 3D cdr grid */
cdr_grid_t*
cdr_new_3d_a (int r0, int z0, int r1, int z1, int ntheta)
{
rz_array_t *ez, *er, *etheta, *eabs, *charge, **dens, **d_dens, *photo;
cdr_grid_t *grid;
int i;
REAL *max_dens;
debug (2, "cdr_new_3d_a (%d, %d, %d, %d)\n", r0, z0, r1, z1);
ez = rz_new_3d_a (r0, z0, r1, z1, ntheta);
er = rz_new_3d_a (r0, z0, r1, z1, ntheta);
etheta = rz_new_3d_a (r0, z0, r1, z1, ntheta);
eabs = rz_new_3d_a (r0, z0, r1, z1, ntheta);
charge = rz_new_3d_a (r0, z0, r1, z1, ntheta);
photo = has_photoionization? rz_new_3d_a (r0, z0, r1, z1, ntheta): NULL;
/* Apart from the real species, (electron, ions...) we can create
* a virtual species that enter into the possible reactions.
* For example, the absolute value of the electric field, eabs.
*/
dens = (rz_array_t **) xmalloc (sizeof(rz_array_t*)
* (no_species + N_VIRTUAL_SPECIES));
d_dens = (rz_array_t **) xmalloc (sizeof(rz_array_t*) * no_species);
max_dens = (REAL *) xmalloc (sizeof(REAL) * no_species);
for (i = 0; i < no_species; i++) {
dens[i] = rz_new_3d_a (r0, z0, r1, z1, ntheta);
d_dens[i] = rz_new_3d_a (r0, z0, r1, z1, ntheta);
}
dens[no_species] = eabs;
grid = (cdr_grid_t *) xmalloc (sizeof(cdr_grid_t));
grid->r0 = r0;
grid->r1 = r1;
grid->z0 = z0;
grid->z1 = z1;
grid->charge = charge;
grid->er = er;
grid->ez = ez;
grid->etheta = etheta;
grid->eabs = eabs;
grid->photo = photo;
grid->dens = dens;
grid->d_dens = d_dens;
grid->max_dens = max_dens;
grid->ntheta = ntheta;
grid->contains_edge = FALSE;
init_leaf (grid);
return grid;
}
/** @brief Creates a guest cdr grid:
*
* one that does not have memory of its own but
* points to the data of another grid (the @a host grid). This is useful
* to easily set boundary conditions. Probably, this function and
* cdr_new_3d_a should be somehow merged.
*/
cdr_grid_t*
cdr_guest (cdr_grid_t *host, int r0, int z0, int r1, int z1)
{
rz_array_t *ez, *er, *etheta, *eabs, *charge, **dens, **d_dens, *photo;
cdr_grid_t *grid;
int i;
REAL *max_dens;
debug (2, "cdr_guest (" grid_printf_str ",%d, %d, %d, %d)\n",
grid_printf_args(host), r0, z0, r1, z1);
ez = rz_guest (host->ez, r0, z0, r1, z1);
er = rz_guest (host->er, r0, z0, r1, z1);
etheta = rz_guest (host->etheta, r0, z0, r1, z1);
eabs = rz_guest (host->eabs, r0, z0, r1, z1);
charge = rz_guest (host->charge, r0, z0, r1, z1);
photo = (has_photoionization?
rz_guest (host->photo, r0, z0, r1, z1): NULL);
dens = (rz_array_t **) xmalloc (sizeof(rz_array_t*)
* (no_species + N_VIRTUAL_SPECIES));
d_dens = (rz_array_t **) xmalloc (sizeof(rz_array_t*) * no_species);
max_dens = (REAL *) xmalloc (sizeof(REAL) * no_species);
for (i = 0; i < no_species; i++) {
dens[i] = rz_guest (host->dens[i], r0, z0, r1, z1);
d_dens[i] = rz_guest (host->d_dens[i], r0, z0, r1, z1);
}
dens[no_species] = eabs;
grid = (cdr_grid_t *) xmalloc (sizeof(cdr_grid_t));
grid->r0 = r0;
grid->r1 = r1;
grid->z0 = z0;
grid->z1 = z1;
grid->charge = charge;
grid->er = er;
grid->ez = ez;
grid->etheta = etheta;
grid->eabs = eabs;
grid->photo = photo;
grid->dens = dens;
grid->d_dens = d_dens;
grid->max_dens = max_dens;
grid->ntheta = host->ntheta;
grid->contains_edge = FALSE;
set_leaf (grid, host->parent, NULL, NULL, host->level);
return grid;
}
/** @brief Returns a grid with the same dimensions as grid and at the same
* level.
*
* Realize that the data is _not_ copied into the new grid.
*/
cdr_grid_t*
cdr_like_a (cdr_grid_t *grid)
{
cdr_grid_t *n;
debug (2, "cdr_like_a(" grid_printf_str ")\n",
grid_printf_args(grid));
n = cdr_new_3d_a (grid->r0, grid->z0, grid->r1, grid->z1, grid->ntheta);
n->level = grid->level;
n->ext_bound = grid->ext_bound;
n->contains_edge = grid->contains_edge;
return n;
}
/** @brief Returns a grid exactly like te one received, with the densities
* copied.
*
* But the descendants are ignored.
*/
cdr_grid_t*
cdr_clone_a (cdr_grid_t *grid)
{
cdr_grid_t *n;
int itheta, s, nr, nz, nspecs;
n = cdr_like_a (grid);
nr = grid->r1 - grid->r0 + 4;
nz = grid->z1 - grid->z0 + 4;
nspecs = no_species;
/* When we use the efield as a refinement criterium, we also have to copy
* eabs (which is a @i virtual density).
*/
if (ref_level_eabs >= 0 && ref_threshold_eabs >= 0.0) nspecs++;
#pragma omp parallel private(s)
{
#pragma omp for
iter_grid_theta_n (grid, itheta, 2) {
for (s = 0; s < nspecs; s++) {
rz_copy_modes (grid->dens[s], grid->r0 - 2, grid->z0 - 2,
n->dens[s], n->r0 - 2, n->z0 - 2,
nr, nz, itheta, itheta);
}
}
}
return n;
}
/** @brief Impose periodic boundary conditions in \f$\theta\f$ on a grid. */
void
cdr_set_periodic (cdr_grid_t *grid)
{
int i;
rz_set_periodic (grid->etheta);
for (i = 0; i < no_species; i++) {
/* For negative r, we have the values
* of the densities on an opposite itheta.
*/
rz_set_periodic (grid->dens[i]);
rz_set_periodic (grid->d_dens[i]);
}
/* I am not completely sure that this is actually neccesary */
rz_set_periodic (grid->er);
rz_set_periodic (grid->ez);
}
/** @brief Recursive version of cdr_set_periodic. */
mk_recursive (cdr_set_periodic, cdr_grid_t)
/** @brief Frees a cdr grid. */
void
cdr_free (cdr_grid_t *grid)
{
int i;
debug (2, "cdr_free\n");
rz_free (grid->charge);
rz_free (grid->er);
rz_free (grid->ez);
rz_free (grid->etheta);
rz_free (grid->eabs);
if (has_photoionization) rz_free (grid->photo);
for (i = 0; i < no_species; i++) {
rz_free (grid->dens[i]);
rz_free (grid->d_dens[i]);
}
free (grid->dens);
free (grid->d_dens);
free (grid->max_dens);
free (grid);
}
/** @brief Recursive version of cdr_free. */
void
cdr_free_r (cdr_grid_t *grid)
{
cdr_grid_t *leaf;
debug (2, "cdr_free_r (" grid_printf_str ")\n", grid_printf_args (grid));
free_childs (grid, leaf, cdr_free_r);
cdr_free (grid);
}
/** @brief Calculates the charge in a CDR grid.
*
* Important Note: The charge is here divided by ntheta because
* our FFT functions are unnormalized and hence when they are applied
* forth and back they return the initial value multiplied
* by ntheta. I believe that this is the best point to normalize the
* data.
*/
void
cdr_calc_charge (cdr_grid_t *grid)
{
int s, r, z, t;
double s_charge;
debug (3, "cdr_calc_charge\n");
rz_set_zero (grid->charge);
for (s = 0; s < no_species; s++) {
s_charge = spec_index[s]->charge;
#pragma omp parallel private(r, z)
{
#pragma omp for
iter_grid_theta (grid, t) {
for (r = grid->r0 - 2; r < grid->r1 + 2; r++) {
for (z = grid->z0 - 2; z < grid->z1 + 2; z++) {
RZT (grid->charge, r, z, t) += (RZT (grid->dens[s], r, z, t)
* s_charge) / grid->ntheta;
}
}
}
}
}
}
/** @brief Recursive version of cdr_calc_charge. */
mk_recursive (cdr_calc_charge, cdr_grid_t)
/** @brief Fourier-transforms the charge in grid and all its descendants. */
void
cdr_dft_charge_r (cdr_grid_t *grid, int sign)
{
cdr_grid_t *leaf;
debug (2, "cdr_dft_charge_r(" grid_printf_str ")\n",
grid_printf_args(grid));
iter_childs (grid, leaf) {
cdr_dft_charge_r (leaf, sign);
}
dft_transform (grid->charge, grid->charge, sign);
}
/** @brief Fourier-transforms the electric field in grid and all its descendants. */
void
cdr_dft_field_r (cdr_grid_t *grid, int sign)
{
cdr_grid_t *leaf;
debug (2, "cdr_dft_field_r(" grid_printf_str ")\n",
grid_printf_args(grid));
iter_childs (grid, leaf) {
cdr_dft_field_r (leaf, sign);
}
dft_transform (grid->er, grid->er, sign);
dft_transform (grid->ez, grid->ez, sign);
dft_diff ((grid_t *) grid, grid->etheta);
dft_transform (grid->etheta, grid->etheta, sign);
}
/** @brief Creates a grid one level coarser than GRID that covers the same area
* or somewhat more.
*
* Note: The new grid contains information only about the charge,
* not the other functions.
* That's why we don't use cdr_restrict.
*/
cdr_grid_t*
cdr_create_coarser_a (cdr_grid_t *grid)
{
int r0_half, r1_half, z0_half, z1_half, itheta;
int r, z;
cdr_grid_t *new_grid;
debug (2, "cdr_create_coarser_a\n");
r0_half = grid->r0 >> 1;
r1_half = (grid->r1 + 1) >> 1;
z0_half = grid->z0 >> 1;
z1_half = (grid->z1 + 1) >> 1;
new_grid = cdr_new_3d_a (r0_half, z0_half, r1_half, z1_half, grid->ntheta);
#pragma omp parallel private (r, z)
{
/** Note that here we may be going one cell out of the aparent boundaries
of the input grids but we allocated enough memory for that. */
#pragma omp for
iter_grid_3d_n (new_grid, r, z, itheta, 1) {
/* Start cylindrical */
/* Here we are interpolating the masses, but in many other places
* we interpolate the densities. Why?
*/
RZT (new_grid->charge, r, z, itheta) =
0.25
* (cyl_q (r + 0.25) * (RZT (grid->charge, 2 * r, 2 * z, itheta)
+ RZT (grid->charge, 2 * r, 2 * z + 1, itheta))
+ cyl_q (r + 0.75) * (RZT (grid->charge, 2 * r + 1, 2 * z, itheta)
+ RZT (grid->charge, 2 * r + 1, 2 * z + 1,
itheta)))
/ cyl_q (r + 0.5);
/* End cylindrical */
}
}
return new_grid;
}
/** @brief Takes a tree of input nodes and adds n coarser grids, returning a
* pointer to the root leaf.
*/
cdr_grid_t*
cdr_add_coarser_grids_a (cdr_grid_t *prev_root, int n)
{
int i;
cdr_grid_t *grid = NULL;
debug (2, "cdr_add_coarser_grids_a\n");
assert (n > 0);
for (i = 0; i < n; i++) {
grid = cdr_create_coarser_a (prev_root);
set_leaf (grid, NULL, NULL, prev_root, prev_root->level - 1);
prev_root->parent = grid;
prev_root = grid;
}
return grid;
}
/** @brief Frees the memory allocated by cdr_add_coarser_grids_a.
*
* Note: be careful to pass here only a tree returned by
* cdr_add_coarser_grids_a, since some grids may lose their references and
* stay allocated forever otherwise.
* (see assert below).
*/
void
cdr_free_coarser_grids (cdr_grid_t *prev_root, int n)
{
int i;
cdr_grid_t *grid;
debug (2, "cdr_free_coarser_grids_a\n");
for (i = 0; i < n; i++) {
assert (NULL == prev_root->next);
grid = prev_root->first_child;
cdr_free (prev_root);
prev_root = grid;
}
prev_root->parent = NULL;
}
/** @brief The interface between the cdr and the poisson parts
*
* If return_pois is true, returns the Poisson trees and they have
* to be de-allocated by the calling program. If not, takes care himself
* of deallocation and returns NULL.
*/
pois_grid_t**
cdr_calc_field_r (cdr_grid_t *cdr, int return_pois)
{
pois_grid_t **pois_modes;
debug (2, "cdr_calc_field_r (" grid_printf_str ", %d)\n",
grid_printf_args(cdr), return_pois);
if (cdr->ntheta != 1)
cdr_dft_charge_r (cdr, 1);
pois_modes = pois_solve_a (cdr, pois_electrostatic);
if (cdr->ntheta != 1)
cdr_dft_field_r (cdr, -1);
cdr_add_ext_field_r (cdr);
/* Formerly, I added the inhomogeneous field here. But this is problematic:
* see pois_add_inhom_phi_r in poisson.c for details.
*
* To return back to adding electric fields and not potentials, uncomment
* these lines:
* if (pois_inhom) {
* q_factor = pois_inhom_q_factor (pois_modes[0]);
* debug (1, "q_factor = %g\n", q_factor);
*
* cdr_add_inhom_field_r (cdr, q_factor);
* }
*/
/* Calculates the absolute value of the field. */
cdr_calc_eabs_r (cdr);
/* Impose periodic boundary conditions in theta. */
if (cdr->ntheta != 1)
cdr_set_periodic_r (cdr);
if (!return_pois) {
int i;
for (i = 0; i < max_ntheta; i++) {
pois_free_r (pois_modes[i]);
}
free (pois_modes);
pois_modes = NULL;
}
return pois_modes;
}
/** @brief Adds an external electric field to a cdr @a grid.
*
* Really, it would be more efficient to include that field in some other
* routine and we will avoid one more grid sweep. However, for the sake
* of code clarity, extendability and maintenability I prefer to add it here.
*
* ext_e_r, ext_e_z and ext_e_theta are functions of three real numbers
* (r, z, \f$\theta\f$) that return each of the components of the electric field.
*
* Note that it is the responsibility of e_theta to behave correctly
* (i.e. periodically) when it receives thetas outside \f$[0, 2 \pi]\f$.
*/
void
cdr_add_ext_field (cdr_grid_t *grid)
{
int ir, iz, itheta;
debug (2, "cdr_add_ext_field (" grid_printf_str ")\n",
grid_printf_args(grid));
#pragma omp parallel private(ir, iz)
{
#pragma omp for
iter_grid_3d_n (grid, ir, iz, itheta, 2) {
RZT(grid->er, ir, iz, itheta) +=
ext_e_r (er_r_at (ir, grid->level),
er_z_at (iz, grid->level),
theta_at (itheta));
RZT(grid->ez, ir, iz, itheta) +=
ext_e_z (ez_r_at (ir, grid->level),
ez_z_at (iz, grid->level),
theta_at (itheta));
RZT(grid->etheta, ir, iz, itheta) +=
ext_e_theta (r_at (ir, grid->level),
z_at (iz, grid->level),
etheta_theta_at (itheta));
}
}
}
/** @brief Recursive version of cdr_add_ext_field. */
mk_recursive (cdr_add_ext_field, cdr_grid_t)
/** @brief Adds to a cdr grid the inhomogeneous field created by a charge
* q located at (r = 0, z = pois_inhom_z).
*
* THIS FUNCTION IS KEPT FOR REFERENCE ONLY. It was superseded by
* pois_add_inhom_phi_r (see poisson.c)
*/
void
cdr_add_inhom_field_r (cdr_grid_t *grid, double q)
{
int ir, iz, itheta;
cdr_grid_t *child;
debug (2, "cdr_add_inhom_field_r (" grid_printf_str ", q = %f)\n",
grid_printf_args(grid), q);
assert (0 != pois_inhom);
#pragma omp parallel private(ir, iz)
{
#pragma omp for
iter_grid_3d_n (grid, ir, iz, itheta, 2) {
RZT(grid->er, ir, iz, itheta) +=
q * pois_inhom_er (er_r_at (ir, grid->level),
er_z_at (iz, grid->level));
RZT(grid->ez, ir, iz, itheta) +=
q * pois_inhom_ez (ez_r_at (ir, grid->level),
ez_z_at (iz, grid->level));
}
}
iter_childs (grid, child) {
cdr_add_inhom_field_r (child, q);
}
}
/** @brief Calculates the absolute value of the electric field by linear
* interpolation of its components.
*
* Of course, it requires that all the components are already present. */
void
cdr_calc_eabs (cdr_grid_t *grid)
{
int ir, iz, itheta;
double er, ez, etheta;
#pragma omp parallel
{
#pragma omp for private(ir, iz, er, ez, etheta)
iter_grid_3d (grid, ir, iz, itheta) {
er = 0.5 * (RZT (grid->er, ir, iz, itheta)
+ RZT (grid->er, ir - 1, iz, itheta));
ez = 0.5 * (RZT (grid->ez, ir, iz, itheta)
+ RZT (grid->ez, ir, iz - 1, itheta));
if (grid->ntheta != 1) {
etheta = 0.5 * (RZT (grid->etheta, ir, iz, itheta)
+ RZT (grid->etheta, ir, iz, itheta - 1));
} else {
etheta = 0;
}
RZT (grid->eabs, ir, iz, itheta) = sqrt (er * er + ez * ez
+ etheta * etheta);
}
}
}
/** @brief Recursive version of cdr_calc_eabs. */
mk_recursive (cdr_calc_eabs, cdr_grid_t)
/********************
* Time integration *
*********************/
/** @brief Makes sure that all species of one grid are non-negative. */
void
cdr_nonegative (cdr_grid_t *grid)
{
int s, ir, iz, itheta;
#pragma omp parallel
{
#pragma omp for private(ir, iz, s)
iter_grid_theta_n (grid, itheta, 2) {
iter_grid_n(grid, ir, iz, 2) {
for (s = 0; s < no_species; s++)
*RZTP (grid->dens[s], ir, iz, itheta) =
MYMAX(0, *RZTP (grid->dens[s], ir, iz, itheta));
}
}
}
}
/** @brief Recursive version of cdr_nonegative. */
mk_recursive (cdr_nonegative, cdr_grid_t)
/** @brief Sets the boundary values for the root grid and those grids that
have a boundary coinciding with any of the boundaries of the root grid. */
void
cdr_set_ext_bnd (cdr_grid_t *grid)
{
int r0, z0, r1, z1, ntheta;
debug (2, "cdr_set_ext_bnd (" grid_printf_str " [grid->ext_bound = 0x%x])\n",
grid_printf_args(grid), grid->ext_bound);
r0 = grid->r0;
z0 = grid->z0;
r1 = grid->r1;
z1 = grid->z1;
ntheta = grid->ntheta;
/* Matching conditions (reduced to Hom. Neumann for ntheta = 1 at
r = r0 */
if (grid->ext_bound & BND_MASK (BND_LEFT)) {
set_axis_bnd (grid);
}
/* At r = r1. */
if (grid->ext_bound & BND_MASK (BND_RIGHT))
set_all_bnd (grid, cdr_ext_bnd_cond[BND_RIGHT], r1 - 1, z0 - 2, 0,
R_INDX, 1,
Z_INDX, 0, z1 - z0 + 4,
THETA_INDX, 0, ntheta);
/* At z = z0. */
if (grid->ext_bound & BND_MASK (BND_BOTTOM))
set_all_bnd (grid, cdr_ext_bnd_cond[BND_BOTTOM], r0 - 2, z0, 0,
Z_INDX, -1,
R_INDX, 0, r1 - r0 + 4,
THETA_INDX, 0, ntheta);
/* At z = z1. */
if (grid->ext_bound & BND_MASK (BND_TOP))
set_all_bnd (grid, cdr_ext_bnd_cond[BND_TOP], r0 - 2, z1 - 1, 0,
Z_INDX, 1,
R_INDX, 0, r1 - r0 + 4,
THETA_INDX, 0, ntheta);
}
/** @brief Recursive version of cdr_set_ext_bnd. */
mk_recursive (cdr_set_ext_bnd, cdr_grid_t)
/** @brief Sets some boundary conditions for all the relevant variables in a
* grid, to understand the parameters, see rz_array.c:rz_set_bnd(..)
*/
static void
set_all_bnd (cdr_grid_t *grid,
int sign, int ir, int iz, int itheta, int dim0, int inout,
int dim1, int dim1_from, int dim1_to,
int dim2, int dim2_from, int dim2_to)
{
int s;
for (s = 0; s < no_species; s++) {
rz_set_bnd (grid->dens[s], sign, RZTP (grid->dens[s], ir, iz, itheta),
dim0, inout,
dim1, dim1_from, dim1_to,
dim2, dim2_from, dim2_to);
}
}
/** @brief Sets the proper boundary conditions for a grid that has its
* left boundary at r = 0 (e.g. the root grid).
*
* We don't set Hom. Neumann at r = r0 since r = r0 is
* not a real boundary: the proper condition here is matching the
* opposite grid. But note that this condition reduces to Hom.
* Neumann in the case ntheta = 1 (because itheta2 = itheta = 0).
*/
static void
set_axis_bnd (cdr_grid_t *grid)
{
int s, itheta, itheta2, ntheta;
debug (2, "set_axis_bnd (" grid_printf_str ")\n",
grid_printf_args(grid));
assert (0 == grid->r0);
ntheta = grid->ntheta;
for (s = 0; s < no_species; s++) {
iter_grid_theta (grid, itheta) {
itheta2 = (itheta + ntheta / 2) % ntheta;
rz_copy_bnd (grid->dens[s], grid->dens[s],
/* sign = */ 1,
/* start_from = */ RZTP (grid->dens[s],
grid->r0, grid->z0 - 2, itheta2),
/* start_to = */ RZTP (grid->dens[s],
grid->r0, grid->z0 - 2, itheta),
R_INDX, BND_OUTWARD, BND_INWARD,
Z_INDX, 0, grid->z1 - grid->z0 + 4,
THETA_INDX, 0, 1 /* <- relative to start_xxx */);
}
}
}
/** @brief Calculates the derivatives of the densities for each point of the
* grid.
*/
void
cdr_calc_d_dens (cdr_grid_t *grid)
{
react_apply_all (grid);
cdr_advect_diffu_r (grid);
}
/* See "An Adaptive Grid Refinement Strategy for the Simulation
* of Negative Streamers", C. Montijn, W. Hundsdorfer and U. Ebert
* for the computations and notation used in this function.
*/
/** @brief This thing looks really ugly, but what does it mean?
* For example, for stride = dens[electrons]->strides[R_INDX],
* it is the \f$p_{ij}\f$ of the aforementioned paper:
* \f$p_{i,j} = (\sigma_{i,j} - \sigma_{i-1,j}) / (\sigma_{i+1,j} - \sigma_{i,j})\f$
*/
#define pij(p_, stride_) \
(((*(p_)) - *((p_) - (stride_))) / (*((p_) + (stride_)) - *(p_)))
/** @brief This is the F^a + F^d in the paper (times \f$\delta\f${r, z, \f$\theta\f$}). */
static double
f_ad (rz_array_t *dens, double efield, double dc, double mc,
int ir, int iz, int itheta, int dim)
{
double sigma, psi_p, sigmasigma;
int ishift;
double *p;
/* a p is the unmodified density-value in the cell (ir,iz,itheta).
* Normally this should be n_e, as only electrons are mobile.
*/
p = RZTP (dens, ir, iz, itheta);
ishift = (efield > 0? 0: 1);
/* sigma is just
* sigma_{i , j} for efield < 0,
* sigma_{i + 1, j} for efield > 0
*/
sigma = *(p + ishift * dens->strides[dim]);
/* psi_p has to be
* psi( p_{i , j}) for efield < 0
* -psi(1/p_{i+1, j}) for efield > 0
*/
psi_p = pij (p + ishift * dens->strides[dim], dens->strides[dim]);
/* E > 0 ---> psi_p = -psi( 1 / p_ij )
* E < 0, p_ij == 0 ---> psi_p = 1
* E < 0, p_ij != 0 ---> psi_p = psi( 1 / p_ij )
*/
psi_p = (efield > 0)? -psi (psi_p) : psi_p == 0? 1.0: psi (1.0 / psi_p);
/* sigmasigma is (sigma_{i+1, j} - sigma_{i, j}) */
sigmasigma = (*p) - *(p + dens->strides[dim]);
/* The first term corresponds to the advection term, the second to the
* diffusion term.
*
* See eq. 3.1.5~3.1.8 in the thesis of C. Montijn. Division by cell-size
* is done in the function calling this one.
*/
return efield * mc * (sigma + psi_p * sigmasigma) + dc * sigmasigma;
}
/** @brief Adds the advection and diffusion terms to the derivatives of the
* densities.
*/
void
cdr_advect_diffu (cdr_grid_t *grid)
{
int ir, iz, itheta, s;
int ii;
double gdr_inv, gdz_inv, d_iso0, d_iso;
double field;
int dimd, t, sg;
REAL *d_dens_p;
double r_inv, er_r;
rz_array_t *er,*ez,*etheta;
debug (2, "cdr_advect_diffu (" grid_printf_str ")\n",
grid_printf_args(grid));
gdr_inv = 1.0 / dr[grid->level];
gdz_inv = 1.0 / dz[grid->level];
er = grid->er;
ez = grid->ez;
etheta = grid->etheta;
for (s = 0; s < no_species; s++) {
/* The charge / mass ratio of a species. */
double cm0, cm;
int *strides;
int ir, rmax, dim2;
rz_array_t *dens, *d_dens, **d_dens_copy;
if (spec_index[s]->mass <= 0) continue;
dens = grid->dens[s];
d_dens = grid->d_dens[s];
strides = dens->strides;
rmax = strides[1]; dim2 = strides[2]/strides[1];
/* Make a copy of d_dens to be able to compare both versions
* of arcos_cdr_advect
int nr = grid->r1 - grid->r0 + 4;
int nz = grid->z1 - grid->z0 + 4;
d_dens_copy = (rz_array_t **) xmalloc (sizeof(rz_array_t*) * no_species);
rz_copy(d_dens,grid->r0,grid->z0,*d_dens_copy,grid->r0,grid->z0,nr,nz);
strides = dens->strides;
*/
arcos_cdr_advect_vec(spec_index[s]->mass,spec_index[s]->charge,
dens->data,d_dens->data,er->data,er->len,
ez->data,ez->len,diffusion_coeff,
dr[grid->level],dz[grid->level],
sprite_module,grid->r0,grid->r1,grid->z0,grid->z1);
/* rz_free(*d_dens_copy); */
}
}
mk_recursive (cdr_advect_diffu, cdr_grid_t)
/** @brief Limiter function, psi(\f$\theta\f$) = max (0, min(1, 1/3 + \f$\theta\f$/6, \f$\theta\f$))
*/
static double
psi (double theta)
{
if (theta < 0) return 0;
if (theta < 0.4) return theta;
if (theta < 4) return (1 + 0.5 * theta) / 3.0;
else return 1.0;
}
/** @brief Returns the minimum tau that satisfies the Courant-Friedrichs-Lewy
restriction (CFL). */
double
cdr_courant (cdr_grid_t *grid)
{
int s, ir, iz, itheta, depth, is_3d;
double dr_min, dz_min, rdtheta_min, emax_r, emax_z, emax_theta, dmax, ddmax;
double tau_a, tau_d, tau_rt, tau_f, max_diff;
debug (2, "cdr_courant (" grid_printf_str ")\n", grid_printf_args(grid));
is_3d = (grid->ntheta == 1? 0: 1);
/* Should we better keep track of the level of the finest grid? */
depth = grid_max_depth_r ((grid_t *) grid);
dr_min = dr[depth];
dz_min = dz[depth];
rdtheta_min = dtheta * grid_rmin_r ((grid_t *) grid);
/* This part is not parallel, but if needed it can be parallelized
* easily by creating vectors xmax[0...ntheta-1], where we would store
* the maximum for each ntheta.
*/
emax_r = -1;
emax_z = -1;
emax_theta = -1;
dmax = -1;
ddmax = 0;
iter_grid_3d (grid, ir, iz, itheta) {
double mu;
if (sprite_module) {
mu = 1.0 / spr_density_at (z_at (iz, grid->level));
} else {
mu = 1.0;
}
//mu = sprite_module? 1.0 / spr_density_at (z_at (iz, grid->level)): 1.0;
max_update (&emax_r, mu * fabs (RZT (grid->er, ir, iz, itheta)));
max_update (&emax_z, mu * fabs (RZT (grid->ez, ir, iz, itheta)));
max_update (&emax_theta, mu * fabs (RZT(grid->etheta, ir, iz, itheta)));
for (s = 0; s < no_species; s++) {
if (spec_index[s]->mass > 0) {
max_update (&dmax, mu * RZT(grid->dens[s], ir, iz, itheta));
max_update (&ddmax, -(RZT(grid->d_dens[s], ir, iz, itheta) /
RZT(grid->dens[s], ir, iz, itheta)));
}
}
}
/* This assert fails when the grid has become completely nan. In that
* case, let us not waste cpu cycles any longer.
*/
assert (emax_r >= 0 && emax_z >= 0 && emax_theta >= 0 && dmax >= 0);
/* Advection. This one usually dominates. */
tau_a = nu_a / (emax_r / dr_min + emax_z / dz_min
+ is_3d * emax_theta / rdtheta_min);
/* Diffusion. */
/* <ISOTROPIC DIFFUSION> */
if (sprite_module) {
double dens_z1, dens_z0;
/* Since we do not know where the density is higher, we check at both
* extremes of the domain. We are assuming that the density is monotonic
* but nothing else (if it is not an exp. it works still).
*/
dens_z0 = spr_density_at (z_at (grid->z0, grid->level));
dens_z1 = spr_density_at (z_at (grid->z1, grid->level));
max_diff = diffusion_coeff / MYMIN(dens_z0, dens_z1);
} else {
max_diff = 0.1; /* diffusion_coeff */
}
tau_d = nu_d / (max_diff / dr_min / dr_min
+ max_diff / dz_min / dz_min
+ is_3d * max_diff / rdtheta_min / rdtheta_min);
/* </ISOTROPIC DIFFUSION> */
/* Mainly reaction growth / decay time */
/* tau_f = nu_f / ddmax; */
/* If sigma is zero somewhere, tau_f turns inf even if nu_f is very large.
* We correct this here. */
/*if (tau_f == 0)*/ tau_f = tau_d; /* Just ignore tau_f please. */
/* Dielectric relaxation time */
tau_rt = nu_rt / dmax;
return MYMIN (tau_a, MYMIN(tau_d, MYMIN(tau_f, tau_rt)));
}
static
void max_update (double *x, double cmp)
{
if (*x < cmp) *x = cmp;
}
/** @brief Writes into the densities of the grid dest the densities of grid orig
* plus its derivatives times h.
*
* If orig = dest, this implements an Euler step.
* But it can also be used as a tool to implement a RK */
void
cdr_update (cdr_grid_t *orig, cdr_grid_t *dest, double h)
{
int ir, iz, itheta, s;
debug (2, "cdr_update (orig = " grid_printf_str ", dest = "
grid_printf_str ", %f)\n",
grid_printf_args(orig), grid_printf_args(dest), h);
/* We assume that orig and dest have the same shape. */
assert (orig->r0 == dest->r0 && orig->z0 == dest->z0 &&
orig->r1 == dest->r1 && orig->z1 == dest->z1 &&
orig->ntheta == dest->ntheta);
#pragma omp parallel
{
#pragma omp for private(ir, iz, s)
iter_grid_3d_n (orig, ir, iz, itheta, 2) {
for (s = 0; s < no_species; s++) {
RZT (dest->dens[s], ir, iz, itheta) =
RZT (orig->dens[s], ir, iz, itheta)
+ h * RZT (orig->d_dens[s], ir, iz, itheta);
}
}
}
cdr_calc_charge (dest);
}
/** @brief Sets dest->dens = dens_0->dens + h/2 * d_dens_1->d_dens +\n
* h/2 * d_dens_2->d_dens
*
* Useful to implement 2nd order RK time-stepping. */
void
cdr_rk2_update (cdr_grid_t *dens_0, cdr_grid_t *d_dens_1,
cdr_grid_t *d_dens_2, cdr_grid_t *dest,
double h)
{
int ir, iz, itheta, s;
debug (2, "cdr_rk2_update (dens_0 = " grid_printf_str
",\n\t\td_dens_1 = " grid_printf_str
",\n\t\td_dens_2 = " grid_printf_str
",\n\t\tdest = " grid_printf_str ")\n",
grid_printf_args(dens_0),
grid_printf_args(d_dens_1),
grid_printf_args(d_dens_2),
grid_printf_args(dest));
#pragma omp parallel
{
#pragma omp for private(ir, iz, s)
iter_grid_3d_n (dest, ir, iz, itheta, 2) {
for (s = 0; s < no_species; s++) {
RZT (dest->dens[s], ir, iz, itheta) =
RZT (dens_0->dens[s], ir, iz, itheta)
+ 0.5 * h * RZT (d_dens_1->d_dens[s], ir, iz, itheta)
+ 0.5 * h * RZT (d_dens_2->d_dens[s], ir, iz, itheta);
}
}
}
cdr_calc_charge (dest);
}
/** @brief Recursive version of cdr_rk2_update
*
* Note: we assume here that all the trees are congruent: this is,
* they have the same structure with nodes of the same size.
*/
void
cdr_rk2_update_r (cdr_grid_t *dens_0, cdr_grid_t *d_dens_1,
cdr_grid_t *d_dens_2, cdr_grid_t *dest,
double h)
{
cdr_grid_t *c_dens_0, *c_d_dens_1, *c_d_dens_2, *c_dest;
cdr_rk2_update (dens_0, d_dens_1, d_dens_2, dest, h);
c_dens_0 = dens_0->first_child;
c_d_dens_1 = d_dens_1->first_child;
c_d_dens_2 = d_dens_2->first_child;
iter_childs (dest, c_dest) {
cdr_rk2_update_r (c_dens_0, c_d_dens_1, c_d_dens_2, c_dest, h);
c_dens_0 = c_dens_0->next;
c_d_dens_1 = c_d_dens_1->next;
c_d_dens_2 = c_d_dens_2->next;
}
}
/** @brief Recursive version of the former QQQQ, used to implement Euler
* integration
*/
void
cdr_self_update_r (cdr_grid_t *grid, double h)
{
cdr_grid_t *child;
cdr_update (grid, grid, h);
iter_childs (grid, child) {
cdr_self_update_r (child, h);
}
}
/** @brief Yet another recursive version of cdr_update, used to implement
* higher order Runge-Kutta integrations.
*
* It creates a new tree of cdr grids.
*/
void
cdr_like_update_ar (cdr_grid_t *grid, cdr_grid_t *new_grid, double h)
{
cdr_grid_t *child, *new_child, *prev = NULL;
cdr_update (grid, new_grid, h);
iter_childs (grid, child) {
new_child = cdr_like_a (child);
/* We can't use add_child here because we read the children of the grid
* in inverse order as we inserted them.
*/
if (NULL == prev) {
new_grid->first_child = new_child;
} else {
prev->next = new_child;
}
set_leaf (new_child, new_grid, NULL, NULL, new_grid->level + 1);
grid_inherit_ext_bound ((grid_t *) new_child);
prev = new_child;
cdr_like_update_ar (child, new_child, h);
}
}
///** @brief Computes the grid error. QQQQ */
//double
//cdr_grid_error (cdr_grid_t *grid, cdr_grid_t *inter)
//{
// int ir, iz, itheta;
// int spec_nr;
// double vol, err, val;
//
// spec_nr = find_species_by_name("electrons");
//
// assert(spec_nr > -1);
//
// vol = dz[grid->level] * dr[grid->level];
//
// iter_grid_3d(grid, ir, iz, itheta)
// {
//
// val = RZT(grid->dens[spec_nr], ir, iz, itheta);
// err = val > 1e-12 ? (val - RZT(inter->dens[spec_nr], ir, iz, itheta)) / val : 0;
// err = err > 0 ? err : -err;
// if (max_err < err)
// {
// max_err = err;
// }
// }
// return err;
//}
//
///** @brief Recursive version of cdr_grid_error. QQQQ */
//void
//cdr_grid_error_r (cdr_grid_t *grid, cdr_grid_t *inter)
//{
// cdr_grid_t *g_child, *i_child;
//
// cdr_grid_error(grid, inter);
//
// i_child = inter->first_child;
//
// for (g_child = grid->first_child; g_child; g_child = g_child->next)
// {
// cdr_grid_error_r(g_child, i_child);
//
// i_child = i_child->next;
// }
//}
/** @brief Makes a full second order Runge-Kutta step.
*
* Returns the timestep actually performed, which can be smaller that h
* if it does not satisfy the Courant criterium.
*/
double
cdr_rk2 (cdr_grid_t *grid, double h, double t)
{
/* intermediate step. */
cdr_grid_t *inter, *child;
double courant_h;
/* After this number of warnings about small timesteps, the code stops. */
static int count_min_timestep = 5;
debug (2, "cdr_rk2 (" grid_printf_str ", %f)\n",
grid_printf_args(grid), h);
cdr_nonegative_r (grid);
/* We want to be sure that the boundaries are properly set. */
prepare_grid (grid);
/* Experimental: Moving z_max boundary -- DISABLED */
cdr_calc_field_r (grid, /*return_pois = */ FALSE);
/* If we are using the sprite module, we set here the proper magnitudes
corresponding to the head altitude here. */
if (sprite_module) spr_hook (grid);
cdr_calc_d_dens (grid);
/* The actual timestep is limited by the Courant stability criterium.
*
* Note that cdr_courant has to be called AFTER the computation of the fields.
*/
courant_h = cdr_courant (grid);
h = MYMIN (h, courant_h);
if (h < warn_min_timestep) {
warning ("Time step [h = %g] is rather small. If this is ok, reduce "
"warn_time_step to remove this warning\n", h);
if (0 == count_min_timestep--) {
fatal ("Too many warnings about small timesteps.\n");
}
}
inter = cdr_like_a (grid);
/* We create a new tree and put there y + dy/dt * h at each level. */
cdr_like_update_ar (grid, inter, h);
/* Set the proper boundary conditions also in the intermediate step. */
prepare_grid (inter);
cdr_calc_field_r (inter, /* return_pois = */ FALSE);
cdr_calc_d_dens (inter);
/* This is something like grid = grid + h / 2 * F(grid) + h / 2 F(inter) */
cdr_rk2_update_r (grid, grid, inter, grid, h);
/* Also, for the refinement functions, the boundary conditions have to be
* appropriately set.
*/
prepare_grid (grid);
cdr_free_r (inter);
return h;
}
/** @brief Prepares a grid family :
* a) Set the boundaries for all subgrids,\n
* b) Restrict the coarser grids from the fine ones.\n
*/
static void
prepare_grid (cdr_grid_t *grid)
{
/* Restrict the densities from finer to coarser grids. */
cdr_restrict_r (grid);
/* Sets the external boundaries. */
cdr_set_ext_bnd_r (grid);
/* Sets the boundaries of children grids interpolating from their parents. */
cdr_set_bnd_r (grid);
/* If two grids share a boundary, use the values of one to set the
boundaries of the other. */
cdr_match_r (grid, NULL);
/* Sets periodic boundary conditions in theta. */
cdr_set_periodic_r (grid);
}
/*****************************************************************
* Refinement and mapping.
*****************************************************************/
/** @brief Takes a pointer to a family of cdr grids, creates a new family
* which is stored in that pointer and takes rid of the initial family.
*
* This function is the entry point of the refinement code.
*/
void
cdr_update_refined (cdr_grid_t **ptree)
{
cdr_grid_t *old, *new;
old = *ptree;
new = cdr_clone_a (old);
cdr_calc_charge (new);
cdr_refine_r (new, old);
*ptree = new;
cdr_free_r (old);
}
/** @brief Updates the values of max_dens and max_charge.
*
* This values are needed for the refinement criterium.
*/
void
cdr_calc_maxs (cdr_grid_t *grid)
{
int start = TRUE;
int s, ir, iz, itheta;
debug (2, "cdr_calc_maxs (" grid_printf_str ")\n",
grid_printf_args(grid));
/* If we have a parent, we inherit the maxs from him. */
if (grid->parent) {
grid->max_charge = grid->parent->max_charge;
for (s = 0; s < no_species; s++) {
grid->max_dens[s] = grid->parent->max_dens[s];
}
return;
}
iter_grid_3d (grid, ir, iz, itheta) {
if (start) {
start = FALSE;
grid->max_charge = fabs(RZT (grid->charge, ir, iz, itheta));
for (s = 0; s < no_species; s++) {
grid->max_dens[s] = RZT (grid->dens[s], ir, iz, itheta);
}
} else {
max_update (&grid->max_charge, fabs(RZT (grid->charge, ir, iz, itheta)));
for (s = 0; s < no_species; s++) {
max_update (&grid->max_dens[s], RZT (grid->dens[s], ir, iz, itheta));
}
}
}
debug (2, "->max_charge = %g, ->max_dens[0] = %g, ->max_dens[1] = %g\n",
grid->max_charge, grid->max_dens[0], grid->max_dens[1]);
}
/** @brief Determines the curvature of ar, which has to be a component of
* grid at @a ir, @a iz.
*
* If @a f is nonnull, determines the curvature of \f$f(ar)\f$. \n
* Note that we only consider the curvatures in @a r and @a z (not in
* \f$\theta\f$).
* This is because \f$\theta\f$ is never refined. (can that be changed in some
* future?)
*/
static double
curv_at (cdr_grid_t *grid, rz_array_t *ar, int ir, int iz, int itheta,
double (*f) (double))
{
int i, level;
REAL x[3];
double dur, duz;
for (i = 0; i < 3; i++) {
x[i] = RZT (ar, ir - 1 + i, iz, itheta);
x[i] = f? f(x[i]): x[i];
}
level = grid->level;
/* <CYLINDRICAL> */
dur = (cyl_er_r_at (ir, level) * (x[2] - x[1])
- cyl_er_r_at (ir - 1, level) * (x[1] - x[0])) / cyl_r_at (ir, level);
/* </CYLINDRICAL> */
for (i = 0; i < 3; i++) {
x[i] = RZT (ar, ir, iz - 1 + i, itheta);
x[i] = f? f(x[i]): x[i];
}
duz = (x[2] - 2 * x[1] + x[0]);
return fabs(dur) + fabs(duz);
}
/** @brief Does the point in grid at @a ir, @a iz, @a itheta require to be
* further refined?
*/
static int
needs_refinement (cdr_grid_t *grid, int ir, int iz, int itheta, int *in_edge)
{
double curv;
int s;
/* For sprites, the eabs refinement criterium may depend on the location. */
int s_ref_level_eabs;
double s_ref_threshold_eabs;
/* If the maximum charge is below this number, we ignore the refinement
* criterium.
*/
const double epsilon_charge = 1e-8;
if (!sprite_module || ref_level_eabs < 0) {
s_ref_level_eabs = ref_level_eabs;
s_ref_threshold_eabs = ref_threshold_eabs;
} else {
double z, back_dens;
z = z_at (iz, grid->level);
back_dens = spr_density_at (z);
s_ref_threshold_eabs = ref_threshold_eabs * back_dens;
/* log2 appears because whenever we increase the background density by a
* factor 2, we should refine up to one more level.
*/
s_ref_level_eabs = ref_level_eabs + (int) floor (log2 (back_dens));
}
/* Electric field refinement. If eabs > ref_threshold_eabs, refine up to
* some predefined level.
*/
if (grid->level < s_ref_level_eabs &&
RZT (grid->eabs, ir, iz, itheta) > s_ref_threshold_eabs) {
debug (4, "Refine grid " grid_printf_str
" at ir = %d, iz = %d, itheta = %d\n"
"\t because too high EABS [eabs = %g]\n",
grid_printf_args(grid), ir, iz, itheta,
RZT (grid->eabs, ir, iz, itheta));
*in_edge = FALSE;
return TRUE;
}
curv = curv_at (grid, grid->charge, ir, iz, itheta, NULL);
if (grid->max_charge > epsilon_charge
&& curv / grid->max_charge > ref_threshold_charge) {
debug (4, "Refine grid " grid_printf_str
" at ir = %d, iz = %d, itheta = %d\n"
"\t because too high CHARGE curvature [curv / max_charge = %g]\n",
grid_printf_args(grid), ir, iz, itheta, curv / grid->max_charge);
*in_edge = FALSE;
return TRUE;
}
for (s = 0; s < no_species; s++) {
/* We ignore immobile species: */
if (spec_index[s]->mass <= 0) continue;
curv = curv_at (grid, grid->dens[s], ir, iz, itheta, NULL);
if (curv / grid->max_dens[s] > ref_threshold_dens) {
debug (4, "Refine grid " grid_printf_str
" at ir = %d, iz = %d, itheta = %d\n"
"\t because too high DENS[%s] curvature [curv / max_dens = %g]\n",
grid_printf_args(grid), ir, iz, itheta, spec_index[s]->name,
curv / grid->max_dens[s]);
*in_edge = FALSE;
return TRUE;
}
/* If the grid contains the leading edge, the criterium of
* refinement also takes into account the density.
*/
if (*in_edge && RZT (grid->dens[s], ir, iz, itheta) > ref_threshold_edge) {
debug (4, "Refine grid " grid_printf_str
" at ir = %d, iz = %d, itheta = %d\n"
"\t because too high DENS[%s] in leading edge [dens = %g]\n",
grid_printf_args(grid), ir, iz, itheta, spec_index[s]->name,
RZT (grid->dens[s], ir, iz, itheta));
return TRUE;
}
}
/* If we are close to the border, we also check the border itself.
*
* NOTE: Does this have any sense? We are anyway checking for
* the boundaries, aren't we?
*/
if (ir == grid->r0 + 1 && needs_refinement (grid, ir - 1, iz, itheta,
in_edge))
return TRUE;
if (iz == grid->z0 + 1 && needs_refinement (grid, ir, iz - 1, itheta,
in_edge))
return TRUE;
if (ir == grid->r1 - 2 && needs_refinement (grid, ir + 1, iz, itheta,
in_edge))
return TRUE;
if (iz == grid->z1 - 2 && needs_refinement (grid, ir, iz + 1, itheta,
in_edge))
return TRUE;
return FALSE;
}
/** @brief Calls the needs_refinement at all \f$\theta\f$ and returns true if
* the grids needs to be refined in _any_ of the angles.
*
* This is the safest thing to do, but some other criterium could be imagined
* as well. The search is stopped as soon as a cell that requires refinement
* is found, but not if it requires refinement due to the leading edge density
* criterium. This is because we need to find where we have to stop applying
* that criterium.
*/
static int
any_needs_refinement (cdr_grid_t *grid, int ir, int iz, int *in_edge)
{
int itheta;
int ret = FALSE;
iter_grid_theta (grid, itheta) {
if (needs_refinement (grid, ir, iz, itheta, in_edge)) {
debug (6, grid_printf_str
" needs refinement at ir = %d, iz = %d itheta = %d\n",
grid_printf_args(grid), ir, iz, itheta);
ret = TRUE;
}
if (ret && ! *in_edge) return TRUE;
}
return ret;
}
/** @brief Determines whether a @a brick needs refinement.
*
* Now we look if we need refinement in a @a brick \n
* i.e. a rectangle in @a r, @a z space
* (usually, @a height = @a cdr_brick_dz,
* @a width = @a cdr_brick_dr),
* but can be smaller if we reach a boundary.
*
* See above, any_needs_refinement to see when do we stop the search.
*/
static int
brick_needs_refinement (cdr_grid_t *grid, int r0, int z0, int r1, int z1,
int *in_edge)
{
int ir, iz;
int ret = FALSE;
for (ir = r0; ir < r1; ir ++) {
for (iz = z1 - 1; iz >= z0; iz--) {
ret = (any_needs_refinement (grid, ir, iz, in_edge) || ret);
if (ret && ! *in_edge) return TRUE;
}
}
return ret;
}
/** @brief Uses the previous routines to refine (if needed) a cdr grid */
void
cdr_refine (cdr_grid_t *grid)
{
int ir;
debug (2, "cdr_refine (" grid_printf_str ")\n",
grid_printf_args(grid));
assert (grid->level <= cdr_max_level);
/* Checks if the maximum refinement level has been reached. */
if (grid->level == cdr_max_level) return;
cdr_calc_maxs (grid);
for (ir = grid->r0; ir < grid->r1; ir += cdr_brick_dr) {
int irmax = MYMIN (grid->r1, ir + cdr_brick_dr);
int tainted, building, z0 = -1, z1 = -1;
int iz;
int in_edge;
int first_edge;
first_edge = in_edge = grid->contains_edge;
/* The leading edge extends downwards. */
for (iz = grid->z0, building = FALSE;
iz < grid->z1; iz += cdr_brick_dz) {
int izmax = MYMIN (grid->z1, iz + cdr_brick_dz);
tainted = brick_needs_refinement (grid, ir, iz, irmax, izmax,
&first_edge);
if (tainted) {
z1 = izmax;
if (!building) {
z0 = iz;
building = TRUE;
}
} else /* ! tainted */ {
if (building) {
assert (z0 >= 0 && z1 > 0);
/* If a grid does not satisfy the curvature criterium anywhere
* and is here only because of the density threshold (edge)
* criterium, he does not deserve to be refined.
*/
building = FALSE;
if (!first_edge) {
refine_in (grid, ir, z0, irmax, z1, in_edge);
in_edge = FALSE;
}
}
}
}
if (building) {
assert (z0 >= 0 && z1 > 0);
if (!first_edge) refine_in (grid, ir, z0, irmax, z1, in_edge);
}
}
}
/** @brief Adds a child to a cdr grid.
*
* The coordinates are in the parent's units
*/
static void
refine_in (cdr_grid_t *grid, int cr0, int cz0, int cr1, int cz1,
int contains_edge)
{
cdr_grid_t *child;
int nr0, nr1, nz0, nz1;
nr0 = cr0 << 1;
nz0 = cz0 << 1;
nr1 = cr1 << 1;
nz1 = cz1 << 1;
child = cdr_new_3d_a (nr0, nz0, nr1, nz1, grid->ntheta);
add_child (grid, child);
grid_inherit_ext_bound ((grid_t*) child);
child->contains_edge = contains_edge;
debug (3, "new child created {r0 = %d, z0 = %d, r1 = %d, z1 = %d, "
"level = %d}\n", child->r0, child->z0, child->r1, child->z1,
child->level);
}
/** @brief Recursively refines a cdr grid and constructs a tree based on it.
*
* if source == NULL\n
* then uses the initial densities\n
* else sets the densities of the newly created grids by interpolating and
* copying from the tree source.
*/
void
cdr_refine_r (cdr_grid_t *grid, cdr_grid_t *source)
{
cdr_grid_t *child;
int itheta;
cdr_calc_charge (grid);
cdr_refine (grid);
iter_childs (grid, child) {
if (NULL != source) {
#pragma omp parallel
{
#pragma omp for
iter_grid_theta (child, itheta) {
map_grid_r (dens_mappers, (grid_t *) source, (grid_t *) child,
itheta,
/* copy = */ TRUE,
/* interpol = */ TRUE,
/* coarsen = */ FALSE,
/* s_buff = */ 0, /* t_buff = */ 2);
}
}
} else {
cdr_init_dens (child);
}
cdr_refine_r (child, source);
}
}
/* Matching of the boundaries:
*
* The boundary conditions of a grid that has a common border with another
* one at the same level have to be matched. This is the purpose of this set
* of functions.
*/
/** @brief Examines pairs of grids and matches them and all their descendants.
*
* If grid2 == NULL, matches only the descendats of grid1. Hence, this
* routine is usually called as cdr_match_r (root, NULL).
*/
void
cdr_match_r (cdr_grid_t *grid1, cdr_grid_t *grid2)
{
cdr_grid_t *child1, *child2;
int match = TRUE;
if (grid2) {
debug (2, "cdr_match_r (grid1 = " grid_printf_str
", grid2 = " grid_printf_str ")\n",
grid_printf_args (grid1), grid_printf_args (grid2));
} else {
debug (2, "cdr_match_r (grid1 = " grid_printf_str
", grid2 = NULL)\n", grid_printf_args (grid1));
}
if (NULL != grid2) {
match = match_grids (grid1, grid2);
}
if (!match) return;
iter_childs (grid1, child1) {
debug (4, "\tchild1 = " grid_printf_str "\n",
grid_printf_args (child1));
iter_childs (grid1, child2) {
debug (4, "\t\tchild2 = " grid_printf_str "\n",
grid_printf_args (child2));
cdr_match_r (child1, (child1 != child2)? child2: NULL);
}
if (NULL == grid2)
continue;
iter_childs (grid2, child2) {
cdr_match_r (child1, child2);
}
}
}
/** @brief Matches the boundaries of grid to reading from grid @a fro.
*
* Returns TRUE if there was a matching, FALSE otherwise.
* Maybe this function should be rewritten to make it more compact and clear.
*/
static int
match_grids (cdr_grid_t *fro, cdr_grid_t *to)
{
int s, x0, x1;
debug (2, "match_grids (to = " grid_printf_str
", fro = " grid_printf_str ")\n",
grid_printf_args(to), grid_printf_args(fro));
assert (to->level == fro->level);
if (to->r1 == fro->r0) {
x0 = MYMAX (to->z0 - 2, fro->z0 - 2);
x1 = MYMIN (to->z1 + 2, fro->z1 + 2);
if (x1 <= x0) return FALSE;
for (s = 0; s < no_species; s++) {
rz_copy_bnd (fro->dens[s], to->dens[s], 1,
RZTP (fro->dens[s], fro->r0, x0, 0),
RZTP (to->dens[s], to->r1 - 1, x0, 0),
R_INDX, BND_OUTWARD, BND_OUTWARD,
Z_INDX, 0, x1 - x0,
THETA_INDX, 0, fro->ntheta);
}
return TRUE;
}
if (to->r0 == fro->r1) {
x0 = MYMAX (to->z0 - 2, fro->z0 - 2);
x1 = MYMIN (to->z1 + 2, fro->z1 + 2);
if (x1 <= x0) return FALSE;
for (s = 0; s < no_species; s++) {
rz_copy_bnd (fro->dens[s], to->dens[s], 1,
RZTP (fro->dens[s], fro->r1 - 1, x0, 0),
RZTP (to->dens[s], to->r0, x0, 0),
R_INDX, BND_INWARD, BND_INWARD,
Z_INDX, 0, x1 - x0,
THETA_INDX, 0, fro->ntheta);
}
return TRUE;
}
if (to->z1 == fro->z0) {
x0 = MYMAX (to->r0 - 2, fro->r0 - 2);
x1 = MYMIN (to->r1 + 2, fro->r1 + 2);
if (x1 <= x0) return FALSE;
for (s = 0; s < no_species; s++) {
rz_copy_bnd (fro->dens[s], to->dens[s], 1,
RZTP (fro->dens[s], x0, fro->z0, 0),
RZTP (to->dens[s], x0, to->z1 - 1, 0),
Z_INDX, BND_OUTWARD, BND_OUTWARD,
R_INDX, 0, x1 - x0,
THETA_INDX, 0, fro->ntheta);
}
return TRUE;
}
if (to->z0 == fro->z1) {
x0 = MYMAX (to->r0 - 2, fro->r0 - 2);
x1 = MYMIN (to->r1 + 2, fro->r1 + 2);
if (x1 <= x0) return FALSE;
for (s = 0; s < no_species; s++) {
rz_copy_bnd (fro->dens[s], to->dens[s], 1,
RZTP (fro->dens[s], x0, fro->z1 - 1, 0),
RZTP (to->dens[s], x0, to->z0, 0),
Z_INDX, BND_INWARD, BND_INWARD,
R_INDX, 0, x1 - x0,
THETA_INDX, 0, fro->ntheta);
}
return TRUE;
}
return FALSE;
}
/** @brief Sets the boundary conditions of all children of grid by
* interpolating from grid itself.
*/
void
cdr_set_bnd (cdr_grid_t *grid)
{
cdr_grid_t *top, *bottom, *left, *right, *parent;
int itheta;
debug (2, "cdr_set_bnd (" grid_printf_str ")\n",
grid_printf_args(grid));
parent = grid->parent;
if (NULL == parent) {
assert (0 == grid->level);
return;
}
/* Since our mapping functions are easier to implement when we map
* between rectangular regions (grids) we map the boundary conditions
* by creating from grid four "guest" grids that share memory with him
* and that contains each of the four boundaries.
*/
top = cdr_guest (grid, grid->r0 - 2, grid->z1,
grid->r1 + 2, grid->z1 + 2);
bottom = cdr_guest (grid, grid->r0 - 2, grid->z0 - 2,
grid->r1 + 2, grid->z0);
left = cdr_guest (grid, grid->r0 - 2, grid->z0,
grid->r0, grid->z1);
right = cdr_guest (grid, grid->r1, grid->z0,
grid->r1 + 2, grid->z1);
#pragma omp parallel
{
#pragma omp for
iter_grid_theta (grid, itheta) {
if (0 == (grid->ext_bound & BND_MASK (BND_TOP)))
map_grid (dens_bnd_mappers, (grid_t *) parent, (grid_t *) top, itheta,
FALSE, TRUE, FALSE, 1, 0);
if (0 == (grid->ext_bound & BND_MASK (BND_BOTTOM)))
map_grid (dens_bnd_mappers, (grid_t *) parent, (grid_t *) bottom, itheta,
FALSE, TRUE, FALSE, 1, 0);
if (0 == (grid->ext_bound & BND_MASK (BND_LEFT))) {
assert (grid->r0 != 0);
map_grid (dens_bnd_mappers, (grid_t *) parent, (grid_t *) left, itheta,
FALSE, TRUE, FALSE, 1, 0);
}
if (0 == (grid->ext_bound & BND_MASK (BND_RIGHT)))
map_grid (dens_bnd_mappers, (grid_t *) parent, (grid_t *) right, itheta,
FALSE, TRUE, FALSE, 1, 0);
}
}
cdr_free (top);
cdr_free (bottom);
cdr_free (left);
cdr_free (right);
}
/** @brief Recursive version of cdr_set_bnd. */
mk_recursive (cdr_set_bnd, cdr_grid_t)
/** @brief Mapping of the densities. */
mapper_t**
cdr_mappers_a (interpol_method_t *interp_method)
{
mapper_t *mapper, **mappers;
int s, nmappers;
nmappers = no_species;
/* mapper->extra represent the species whose density we will map.
* There are no_species species, but no_species + 1 represents
* the abs value of the electric field, which is mapped only to use
* as an electric field-based refinement criterium.
*/
if (ref_level_eabs >= 0 && ref_threshold_eabs >= 0.0) nmappers++;
mappers = (mapper_t **) xmalloc (sizeof(mapper_t*) * (nmappers + 1));
for (s = 0; s < nmappers; s++) {
mapper = (mapper_t *) xmalloc (sizeof(mapper_t));
mapper->extra = s;
mapper->interpol_method = interp_method;
mapper->copy = dens_copy;
mapper->interpol_set = dens_interpol_set;
mapper->interpol = dens_interpol;
mapper->coarsen = NULL;
mapper->shift_r = 0;
mapper->shift_z = 0;
mappers[s] = mapper;
}
mappers[nmappers] = NULL;
return mappers;
}
/** @brief Frees the memory of all mappers QQQQ */
void
cdr_free_mappers (mapper_t **mappers)
{
int s;
for (s = 0; s < no_species; s++) {
free (mappers[s]);
}
free (mappers);
}
/** @brief dens_copy Copies QQQQ */
void
dens_copy (mapper_t *mapper, grid_t *source, grid_t *target,
int ir, int iz, int itheta)
{
cdr_grid_t *cdr_s, *cdr_d;
cdr_s = (cdr_grid_t*) source;
cdr_d = (cdr_grid_t*) target;
RZT (cdr_d->dens[mapper->extra], ir, iz, itheta) =
RZT (cdr_s->dens[mapper->extra], ir, iz, itheta);
}
/** @brief Interpolates a set QQQQ */
int
dens_interpol_set (mapper_t *mapper, grid_t *source, interpol_t *interpol,
int pr, int pz, int itheta)
{
cdr_grid_t *cdr;
cdr = (cdr_grid_t*) source;
interpol_set_stencil_at (source, interpol,
r_at (pr, cdr->level),
z_at (pz, cdr->level),
cdr->dens[mapper->extra], pr, pz, itheta);
return TRUE;
}
/** @brief dens_interpol Interpolates QQQQ */
void
dens_interpol (mapper_t *mapper, grid_t *source, grid_t *target,
interpol_t *interpol,
int ir, int iz, int itheta)
{
double r, z;
cdr_grid_t *cdr;
cdr = (cdr_grid_t *) target;
r = r_at (ir, cdr->level);
z = z_at (iz, cdr->level);
RZT (cdr->dens[mapper->extra], ir, iz, itheta) =
interpol_apply (interpol, r, z);
}
/** @brief Restricts the values of the densities from the child grid into the
* parent.
*/
static void
restrict_from (cdr_grid_t *parent, cdr_grid_t *child)
{
int ir, iz, cr, cz, itheta, s;
REAL sum;
debug (2, "restrict_from (parent =" grid_printf_str
", child = " grid_printf_str ")\n",
grid_printf_args(parent), grid_printf_args(child));
assert (parent->level == child->level - 1);
#pragma omp parallel private(sum, ir, iz, cr, cz, s)
{
#pragma omp for
iter_grid_theta (parent, itheta) {
iter_grid_parent (child, ir, iz) {
for (s = 0; s < no_species; s++) {
sum = 0;
for (cr = (ir << 1); cr <= (ir << 1) + 1; cr++)
for (cz = (iz << 1); cz <= (iz << 1) + 1; cz++)
sum += cyl_r_at (cr, child->level)
* RZT (child->dens[s], cr, cz, itheta);
RZT (parent->dens[s], ir, iz, itheta) =
0.25 * sum / cyl_r_at (ir, parent->level);
}
}
}
}
}
/** @brief Restricts a grid with all its children.
*/
void
cdr_restrict (cdr_grid_t *grid)
{
cdr_grid_t *child;
iter_childs(grid, child) {
restrict_from (grid, child);
}
}
/** @brief And its recursive version.
*
* Note that this has to be tail recursive, sice we first have to restrict
* the childs.
*/
mk_tail_recursive (cdr_restrict, cdr_grid_t)
/** @brief Now the routines to initialize a grid with given densities.
* gauss2 initializes one or two gaussian seeds
*/
double
gauss2_xyz (double x, double y, double z)
{
double q;
q = invpi32 * 1 / (seed_index[curr_seed]->sigma_x * seed_index[curr_seed]->sigma_y *
seed_index[curr_seed]->sigma_z)
* exp (- SQ(x - seed_index[curr_seed]->x0) / SQ(seed_index[curr_seed]->sigma_x)
- SQ(y - seed_index[curr_seed]->y0) / SQ(seed_index[curr_seed]->sigma_y)
- SQ(z - seed_index[curr_seed]->z0) / SQ(seed_index[curr_seed]->sigma_z));
return q;
}
/** @brief Sets the densities of species species according to the function
* \f$f (x, y, z)\f$.
*
* mode can be one of the following:\n
* SET_DENS_OVERWRITE: Set the dens to f(x, y, x), ignoring what was there
* before.\n
* SET_DENS_ADD: Adds f to the former density.\n
* SET_DENS_SUB: Substracts f from the former density.\n
*/
void
cdr_set_dens (cdr_grid_t *cdr, int species, int mode, double factor,
double (*f) (double, double, double))
{
int ir, iz, itheta;
double ctheta, stheta, x, y;
debug (2, "cdr_set_dens (" grid_printf_str ", %s, ...)\n",
grid_printf_args(cdr), spec_index[species]->name);
#pragma omp parallel private(ir, iz, ctheta, stheta, x, y)
{
#pragma omp for
iter_grid_theta_n (cdr, itheta, 2) {
//sincos (theta_at(itheta), &stheta, &ctheta);
stheta=sin(theta_at(itheta));
ctheta=cos(theta_at(itheta));
iter_grid_r_n(cdr, ir, 2) {
x = r_at(ir, cdr->level) * ctheta;
y = r_at(ir, cdr->level) * stheta;
iter_grid_z_n(cdr, iz, 2) {
switch (mode) {
case SET_DENS_OVERWRITE:
*RZTP(cdr->dens[species], ir, iz, itheta) =
factor * f (x, y, z_at(iz, cdr->level));
break;
case SET_DENS_ADD:
*RZTP(cdr->dens[species], ir, iz, itheta) +=
factor * f (x, y, z_at(iz, cdr->level));
break;
case SET_DENS_SUB:
*RZTP(cdr->dens[species], ir, iz, itheta) -=
factor * f (x, y, z_at(iz, cdr->level));
break;
}
}
}
}
}
}
/** @brief Returns 1.0 */
double f_one(double x, double y, double z)
{
return 1.0;
}
/** @brief Inits the densities of all species. */
void
cdr_init_dens (cdr_grid_t *cdr)
{
int cnt;
debug (2, "cdr_init_dens (" grid_printf_str ")\n",
grid_printf_args(cdr));
for (cnt = 0; cnt < no_species; cnt++)
{
cdr_set_dens(cdr, cnt, SET_DENS_OVERWRITE, 0.0, f_one);
}
for (cnt = 0; cnt < no_seed; cnt++)
{
curr_seed = cnt;
if (seed_index[cnt]->type == 0)
cdr_set_dens(cdr, seed_index[cnt]->species, SET_DENS_ADD, seed_index[cnt]->value, gauss2_xyz);
if (seed_index[cnt]->type == 1)
cdr_set_dens(cdr, seed_index[cnt]->species, SET_DENS_ADD, seed_index[cnt]->value, f_one);
}
}
/** @brief Initializes the densities allocating a new grid family.*/
cdr_grid_t*
cdr_scratch_init (void)
{
cdr_grid_t *cdr;
cdr = cdr_new_3d_a (0, 0, gridpoints_r, gridpoints_z, max_ntheta);
cdr->level = 0;
cdr->ext_bound = BND_MASK_ALL;
cdr->contains_edge = TRUE;
cdr_init_dens (cdr);
cdr_refine_r (cdr, NULL);
if (perturb_epsilon > 0.0 && max_ntheta > 1) {
dft_dens_perturb_r (cdr, electrons, NULL);
/* Maybe the perturbation has messed up the boundary conditions, so we
* have to repair them.
*/
cdr_set_ext_bnd_r (cdr);
cdr_set_periodic_r (cdr);
}
return cdr;
}
/** @brief Dumps all the contents of the given grid into filenames given by
* prefix and name
*/
void
cdr_dump (cdr_grid_t *grid, const char *prefix, const char *name)
{
char *fname;
int s, nt;
int m = cdr_output_margin;
/* To make it easier to produce plots in theta, we save one extra
* theta that has to give the same data as the first one. Except if
* we are working in 2D, where anyway we have only one possible theta (0)
*/
nt = grid->ntheta == 1? 1: grid->ntheta + 1;
#pragma omp parallel sections private(fname)
{
#pragma omp section
{
asprintf (&fname, "%s/r.%s.tsv", prefix, name);
rz_axis_dump (fname, grid->r0 - m, grid->r1 + m, dr[grid->level]);
free (fname);
}
#pragma omp section
{
asprintf (&fname, "%s/z.%s.tsv", prefix, name);
rz_axis_dump (fname, grid->z0 - m , grid->z1 + m, dz[grid->level]);
free (fname);
}
#pragma omp section
{
/* In all this function we use ntheta + 1 to make matlab's life easier.
* Note that some of these variables have not been made periodic
* and hence the value for ntheta may be undefined.
*/
asprintf (&fname, "%s/theta.%s.tsv", prefix, name);
rz_axis_dump (fname, 0, nt, dtheta);
free (fname);
}
#pragma omp section
{
asprintf (&fname, "%s/charge.%s.tsv", prefix, name);
rz_dump_3d (grid->charge, fname, "w", grid->r0 - m, grid->z0 - m,
grid->r1 + m, grid->z1 + m, nt);
free (fname);
}
#pragma omp section
{
asprintf (&fname, "%s/er.%s.tsv", prefix, name);
rz_dump_3d (grid->er, fname, "w", grid->r0 - m, grid->z0 - m,
grid->r1 + m, grid->z1 + m, nt);
free (fname);
}
#pragma omp section
{
asprintf (&fname, "%s/ez.%s.tsv", prefix, name);
rz_dump_3d (grid->ez, fname, "w", grid->r0 - m, grid->z0 - m,
grid->r1 + m, grid->z1 + m, nt);
free (fname);
}
#pragma omp section
{
asprintf (&fname, "%s/etheta.%s.tsv", prefix, name);
rz_dump_3d (grid->etheta, fname, "w", grid->r0 - m, grid->z0 - m,
grid->r1 + m, grid->z1 + m, nt);
free (fname);
}
#pragma omp section
{
asprintf (&fname, "%s/eabs.%s.tsv", prefix, name);
rz_dump_3d (grid->eabs, fname, "w", grid->r0 - m, grid->z0 - m,
grid->r1 + m, grid->z1 + m, nt);
free (fname);
}
#pragma omp section
{
if (has_photoionization) {
asprintf (&fname, "%s/photo.%s.tsv", prefix, name);
rz_dump_3d (grid->photo, fname, "w", grid->r0 - m, grid->z0 - m,
grid->r1 + m, grid->z1 + m, nt);
free (fname);
}
}
#pragma omp section
{
for (s = 0; s < no_species; s++) {
/* The densities */
asprintf (&fname, "%s/%s.%s.tsv", prefix, spec_index[s]->name, name);
rz_dump_3d (grid->dens[s], fname, "w", grid->r0 - m, grid->z0 - m,
grid->r1 + m, grid->z1 + m, nt);
free (fname);
/* ...and their derivatives. */
asprintf (&fname, "%s/d_%s.%s.tsv", prefix, spec_index[s]->name, name);
rz_dump_3d (grid->d_dens[s], fname, "w", grid->r0 - m, grid->z0 - m,
grid->r1 + m, grid->z1 + m, nt);
free (fname);
}
}
}
}
/** @brief Dumps all the contents of the given grid into filenames given by
* @a prefix and @a name.
*
* It also writes in tree.NAME.dat the tree structure of grid, in a format
* appropiate for cdr_load_tree to understand.
@a infp has to be NULL when called from outside.
The format of a tree.NAME.dat is as follows. Each line is composed
by a "command" and some parameters. the "commands" can be
* time
parameter: sim_time
Writes the current simulation time, as received in sim_time
* open
parameters: gridname r0 z0 r1 z1 level ext_bound margin
Reads the densities from the files given by gridname, with
the corresponding values of the grid parameters. Leaves the grid
open to add childrens to it. Those children will be all the grids
read until the grid is closed.
* close
parameters: gridname
Closes the latest opened grid. All subsequent grids will be regarded
as brothers of gridname.
*/
void
cdr_dump_r (cdr_grid_t *grid, const char *prefix, const char *name,
FILE *infp, double sim_time)
{
cdr_grid_t *child;
char *cname;
int i, nchilds;
char codes[] = "abcdefghijklmnopqrstuvwxyz";
FILE *fp;
if (NULL == infp) {
/* Root call */
asprintf (&cname, "%s/tree.%s.dat", prefix, name);
fp = fopen (cname, "w");
if (NULL == fp) {
fatal ("Could not open file %s/tree.%s.dat to write\n",
prefix, name);
}
free (cname);
fprintf (fp, "time %g\n", sim_time);
} else {
fp = infp;
}
/* We want to be sure that the charge that we plot is actually the
* charge and not its Fourier transform.
*/
cdr_calc_charge_r (grid);
fprintf (fp, "open %s %d %d %d %d %d %d %d\n", name, grid->r0, grid->z0,
grid->r1, grid->z1, grid->level, grid->ext_bound,
cdr_output_margin);
cdr_dump (grid, prefix, name);
nchilds = grid_howmany_children ((grid_t *) grid);
for (i = 0; i < nchilds; i++) {
child = (cdr_grid_t *) grid_get_child ((grid_t*) grid, nchilds - i - 1);
assert (NULL != child);
if (i > sizeof(codes) - 2)
asprintf (&cname, "%s{%d}", name, i);
else
asprintf (&cname, "%s%c", name, codes[i]);
cdr_dump_r (child, prefix, cname, fp, sim_time);
free (cname);
}
fprintf (fp, "close %s\n", name);
if (NULL == infp) {
/* Root call */
fclose (fp);
}
}
/** @brief Reads the data format produced by cdr_dump_r and creates a complete
* tree from it.
*
* This function is really quick-and-dirty: one should check the fscanfs
* and do everything cleanlier.
*/
cdr_grid_t *
cdr_load_tree_r (const char *prefix, const char *name, FILE *infp)
{
char command[16], gridname[32], *fname;
int r0, z0, r1, z1, level, ext_bound, margin, nt, s;
int open_close;
cdr_grid_t *grid = NULL, *leaf;
FILE *fp;
debug (2, "cdr_load_tree_r (prefix = \"%s\", name = \"%s\", ...)\n",
prefix, name);
nt = max_ntheta == 1? 1: max_ntheta + 1;
if (NULL == infp) {
asprintf (&fname, "%s/tree.%s.dat", prefix, name);
fp = fopen (fname, "r");
if (NULL == fp) {
fatal ("Could not open file %s/tree.%s.dat to read\n",
prefix, name);
}
free (fname);
} else {
fp = infp;
}
do {
fscanf (fp, "%15s %15s", command, gridname);
open_close = TRUE;
/* We analyze some commands that do not create/close grids, now
* restricted to set time.
*/
if (0 == strcmp (command, "time")) {
double new_time;
sscanf (gridname, "%lf\n", &new_time);
warning ("Starting time [%f] was read from %s/tree.%s.dat\n",
new_time, prefix, name);
start_t = new_time;
open_close = FALSE;
}
} while (!open_close);
if (0 == strcmp (command, "open")) {
debug (3, "opening %s\n", gridname);
fscanf (fp, "%d %d %d %d %d %d %d\n",
&r0, &z0, &r1, &z1, &level, &ext_bound, &margin);
grid = cdr_new_3d_a (r0, z0, r1, z1, max_ntheta);
grid->ext_bound = ext_bound;
grid->level = level;
for (s = 0; s < no_species; s++) {
/* The densities */
asprintf (&fname, "%s/%s.%s.tsv", prefix, spec_index[s]->name, gridname);
debug (3, "Loading %s\n", fname);
rz_dump_3d (grid->dens[s], fname, "r",
grid->r0 - margin, grid->z0 - margin,
grid->r1 + margin, grid->z1 + margin, nt);
free (fname);
}
do {
leaf = cdr_load_tree_r (prefix, name, fp);
if (NULL != leaf) {
assert (leaf->level == grid->level + 1);
add_child (grid, leaf);
}
} while (NULL != leaf);
} else if (0 == strcmp (command, "close")) {
debug (3, "closing %s\n", gridname);
grid = NULL;
}
if (NULL == infp) {
fclose (fp);
}
return grid;
}
/** @brief Given a grid family, writes in the file named @a fname the
* coordinates of the frames that define the grid and his descendants.
*/
void
cdr_dump_frames (cdr_grid_t *grid, const char *prefix, const char *name)
{
FILE *fp;
char *fname;
asprintf (&fname, "%s/frames.%s.tsv", prefix, name);
fp = fopen (fname, "w");
free (fname);
if (fp == NULL) {
warning ("Unable to open %s\n", fname);
return;
}
aux_dump_frames_r (grid, fp);
fclose (fp);
}
/** @brief aux_dump_frames_r QQQQ */
void
aux_dump_frames_r (cdr_grid_t *grid, FILE *fp)
{
cdr_grid_t *child;
int level;
level = grid->level;
fprintf (fp, "%g %g %g %g %d\n",
er_r_at (grid->r0 - 1, level), ez_z_at (grid->z0 - 1, level),
er_r_at (grid->r1 - 1, level), ez_z_at (grid->z1 - 1, level),
level);
iter_childs(grid, child) {
aux_dump_frames_r (child, fp);
}
}
|