Changeset - 44a98068c533
[Not reviewed]
0 1 0
Andras Gilyen - 8 years ago 2017-09-07 16:48:42
gilyen@clayoquot.swat.cwi.nl
nicer proof
1 file changed with 15 insertions and 11 deletions:
main.tex
15
11
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -611,24 +611,26 @@ The intuition of the following lemma is that the far right can only affect the z
 
	&=\sum_{k=1}^{n-1}\P^{[k+1]}_{b_{k+1}=1}([k]\in\mathcal{P})\cdot \P^{[n-k+1]}(\NZ{1})+ \bigO{p^{n}} \tag{by Claim~\ref{lemma:eventindependenceNew}}\\
 
	&=\sum_{k=1}^{n-1}\P^{[k+1]}_{b_{k+1}=1}([k]\in\mathcal{P})\cdot \left(\P^{[n-k]}(\NZ{1})+\bigO{p^{n-k}}\right)+ \bigO{p^{n}} \tag{by induction} \\	
 
	&=\sum_{k=1}^{n-1}\P^{[k+1]}_{b_{k+1}=1}([k]\in\mathcal{P})\cdot \P^{[n-k]}(\NZ{1})+ \bigO{p^{n}} \tag*{$\left(\P^{[k+1]}_{b_{k+1}=1}([k]\in\mathcal{P})=\bigO{p^{k}}\right)$}\\	
 
	&=\sum_{k=1}^{n-1}\P^{[n]}([k]\in\mathcal{P})+ \bigO{p^{n}} \tag{by Claim~\ref{lemma:eventindependenceNew}}\\
 
	&=\sum_{k=1}^{n}\P^{[n]}([k]\in\mathcal{P})+ \bigO{p^{n}} \tag*{$\left(\P^{[n]}([n]\in\mathcal{P})=\bigO{p^{n}}\right)$}\\	
 
	&=\P^{[n]}(\Z{1})	+ \bigO{p^{n}} 
 
	\end{align*}
 
\end{proof}
 
\begin{corollary}\label{cor:probIndepNew}
 
	$\P^{[n]}(\Z{1})-\P^{[m]}(\Z{1}) = \bigO{p^{\min(n,m)}}$. (Should be true with $\bigO{p^{\min(n,m)+1}}$ too.)
 
\end{corollary}
 

	
 
	The intuition of the following lemma is simmilar to the previous. The events on the two sides should be independent unless an interaction chain is forming, implying that every vertex gets resampled to $0$ at least once.
 

	
 
 	\begin{lemma}\label{lemma:independenetSidesNew}	
 
 		$$\P^{[k]}(\Z{1}\cap \Z{k})=\P^{[k]}(\Z{1})\P^{[k]}(\Z{k})+\bigO{p^{k}}=\left(\P^{[k]}(\Z{1})\right)^2+\bigO{p^{k}}.$$
 
 	\end{lemma}   
 
 	Note that using De Morgan's law and the inclusion-exclusion formula we can see that this is equivalent to saying:
 
 	$$\P^{[k]}(\NZ{1}\cap \NZ{k})=\P^{[k]}(\NZ{1})\P^{[k]}(\NZ{k})+\bigO{p^{k}}.$$
 
 	\begin{proof}
 
 		We proceed by induction on $k$. For $k=1,2$ the statement is trivial.
 
 		
 
 		Now observe that:
 
 		$$\P^{[k]}(\Z{1})=\sum_{P\text{ patch}\,:\,1\in P}\P^{[k]}(P\in\mathcal{P})$$
 
 		$$\P^{[k]}(\Z{k})=\sum_{P\text{ patch}\,:\,k\in P}\P^{[k]}(P\in\mathcal{P})$$
 
 		
 
@@ -658,52 +660,54 @@ The intuition of the following lemma is that the far right can only affect the z
 
 		+\bigO{p^{k}} \tag{by Corrolary~\ref{cor:probIndepNew}}\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
 
 		\P^{[k]}([\ell]\in\mathcal{P})
 
 		\P^{[k]}([r,k]\in\mathcal{P})
 
 		+\bigO{p^{k}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
 		&=\left(\sum_{\ell\in [k]}\P^{[k]}([\ell]\in\mathcal{P})\right)
 
 		\left(\sum_{r\in [k]}\P^{[k]}([r,k]\in\mathcal{P})\right)
 
 		+\bigO{p^{k}} \tag*{$\left(\P^{[k]}([\ell]\in\mathcal{P})=\bigO{p^{\ell}}\right)$}\\	
 
 		&=\P^{[k]}(\Z{1})\P^{[k]}(\Z{k})
 
 		+\bigO{p^{k}}.	
 
 		\end{align*}
 
 	\end{proof}
 

	
 
	Again the intuition of the final theorem is simmilar to the previous lemmas. A site can only realise the length of the cycle after an interaction chain was formed around the cycle, implying that every vertex was resampled to $0$ at least once.
 
 	
 
	\begin{theorem}
 
		$R^{(n)}-R^{(m)}=\bigO{p^{\min(n,m)}}$.
 
	\end{theorem}
 
	\begin{proof}
 
        Some notation: let $P$ be an interval $[a,b]$. We say $P$ is a \emph{patch} when the $\Z{i}$ event holds for all $i \in [a,b]$ and $\NZ{a-1}$ and $\NZ{b+1}$ holds. We denote this event by $P\in\mathcal{P}$, so
 
        \begin{align*}
 
            P\in\mathcal{P} \equiv \NZ{a-1} \cap \Z{a} \cap \Z{a+1} \cap \cdots \cap \Z{b-1} \cap \Z{b} \cap \NZ{b+1} .
 
        \end{align*}
 
        Note that we have the following partition of the event $\Z{v}$ for any vertex $v\in[n]$:
 
        \begin{align*}
 
            \Z{v} = \dot\bigcup_{P : v\in P} (P\in\mathcal{P})
 
        \end{align*}
 
		Let $N\geq \max(2n,2m)$, then
 
		\begin{align*}
 
			R^{(n)}
 
			&= \E^{(n)}(\Res{1}) \tag{by translation invariance}\\
 
			&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq 1) \\
 
			%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r-1}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq 1\,\&\, [\ell+1,r-1]\in\mathcal{P}) \tag{partition}\\
 
			%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq 1\,\&\, [\ell+1,r-1]\in\mathcal{P})  +\bigO{p^{n}} \\	
 
			%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{[l,r]}_{b_{\ell}=b_{r}=1}(\Res{1}\geq 1\,\&\, [\ell+1,r-1]\in\mathcal{P}) \P^{[r,\ell]}(\NZ{\ell,r}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\				
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq 1\,\&\, P\in\mathcal{P}) \tag{partition}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{(n)}(\Res{1}\geq 1\,\&\, P\in\mathcal{P}) +\bigO{p^{n}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq 1\,\&\, P\in\mathcal{P}) \P^{[\overline{P}]}(\NZ{\partial P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq 1\,\&\, P\in\mathcal{P}) \left(\left(\P^{[|\overline{P}|]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq 1\,\&\, P\in\mathcal{P}) \left(\left(\P^{[N]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Corollary~\ref{cor:probIndepNew}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[-N,N]}(\Res{1}\geq 1\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{[-N,N]}(\Res{1}\geq 1\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
			&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq k) \\
 
			%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r-1}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \tag{partition}\\
 
			%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P})  +\bigO{p^{n}} \\	
 
			%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{[l,r]}_{b_{\ell}=b_{r}=1}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \P^{[r,\ell]}(\NZ{\ell,r}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\				
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \tag{partition}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \P^{[\overline{P}]}(\NZ{\partial P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[|\overline{P}|]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[N]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Corollary~\ref{cor:probIndepNew}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
			&= \E^{[-N,N]}(\Res{1})+\bigO{p^{n}}.
 
		\end{align*}		
 
		
 
		Repeating the same calculation with $m$, and comparing the two expressions completes the proof.
 
	\end{proof} 	
 

	
 
Old:
 

	
 
The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once.
 
\begin{lemma}\label{lemma:probIndep}
 
	Suppose we have a finite set $I\subset\mathbb{N}_+$ of vertices.
 
    Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$. These definitions are illustraded in Figure \ref{fig:lemmaillustration}.
0 comments (0 inline, 0 general)