Files @ be2f7fe6b220
Branch filter:

Location: AENC/switchchain/cpp/switchchain_initialtris.cpp - annotation

Tom Bannink
Move switchchain class to separate header file
9905828198ec
9905828198ec
9905828198ec
be2f7fe6b220
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
257995a65b71
257995a65b71
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9c4226491043
9c4226491043
9c4226491043
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9c4226491043
9c4226491043
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9c4226491043
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
9905828198ec
#include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>

//
// Assumes degree sequence does NOT contain any zeroes!
//
// method2 = true  -> take highest degree and finish its pairing completely
// method2 = false -> take new highest degree after every pairing
template <typename RNG>
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
    // that remain, simply pair up with random ones
    unsigned int n = ds.size();

    // degree, vertex index
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
    for (unsigned int i = 0; i < n; ++i) {
        degrees[i].first = ds[i];
        degrees[i].second = i;
    }

    std::vector<decltype(degrees.begin())> available;
    available.reserve(n);

    // Clear the graph
    g.reset(n);

    while (!degrees.empty()) {
        std::shuffle(degrees.begin(), degrees.end(), rng);
        // Get the highest degree:
        // If there are multiple highest ones, we pick a random one,
        // ensured by the shuffle.
        // The shuffle is needed anyway for the remaining part
        unsigned int dmax = 0;
        auto uIter = degrees.begin();
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
            if (iter->first >= dmax) {
                dmax = iter->first;
                uIter = iter;
            }
        }

        if (dmax > degrees.size() - 1)
            return false;

        if (dmax == 0) {
            std::cerr << "ERROR 1 in GCM.\n";
        }

        unsigned int u = uIter->second;

        if (method2) {
            // Take the highest degree out of the vector
            degrees.erase(uIter);

            // Now assign randomly to the remaining vertices
            // Since its shuffled, we can pick the first 'dmax' ones
            auto vIter = degrees.begin();
            while (dmax--) {
                if (vIter->first == 0)
                    std::cerr << "ERROR in GCM2.\n";
                if (!g.addEdge({u, vIter->second}))
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
                vIter->first--;
                if (vIter->first == 0)
                    vIter = degrees.erase(vIter);
                else
                    vIter++;
            }
        } else {
            // Pair with a random vertex that is not u itself and to which
            // u has not paired yet!
            available.clear();
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
                if (iter->second != u && !g.hasEdge({u, iter->second}))
                    available.push_back(iter);
            }
            if (available.empty())
                return false;
            std::uniform_int_distribution<> distr(0, available.size() - 1);
            auto vIter = available[distr(rng)];
            // pair u to v
            if (vIter->first == 0)
                std::cerr << "ERROR 2 in GCM1.\n";
            if (!g.addEdge({u, vIter->second}))
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
            // Purge anything with degree zero
            // Be careful with invalidating the other iterator!
            // Degree of u is always greater or equal to the degree of v
            if (dmax == 1) {
                // Remove both
                // Erasure invalidates all iterators AFTER the erased one
                if (vIter > uIter) {
                    degrees.erase(vIter);
                    degrees.erase(uIter);
                } else {
                    degrees.erase(uIter);
                    degrees.erase(vIter);
                }
            } else {
                // Remove only v if it reaches zero
                uIter->first--;
                vIter->first--;
                if (vIter->first == 0)
                    degrees.erase(vIter);
            }
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
            //                             [](auto x) { return x.first == 0; }));
        }
    }
    return true;
}

int main() {
    // Generate a random degree sequence
    std::mt19937 rng(std::random_device{}());

    // Goal:
    // Degrees follow a power-law distribution with some parameter tau
    // Expect:  #tri = const * n^{ something }
    // The goal is to find the 'something' by finding the number of triangles
    // for different values of n and tau
    float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};

    Graph g;

    std::ofstream outfile("graphdata_initialtris.m");
    outfile << '{';
    bool outputComma = false;

    for (int numVertices = 200; numVertices <= 2000; numVertices += 400) {
        for (float tau : tauValues) {

            DegreeSequence ds(numVertices);
            powerlaw_distribution degDist(tau, 1, numVertices);
            //std::poisson_distribution<> degDist(12);

            // For a single n,tau take samples over several instances of
            // the degree distribution.
            // 500 samples seems to give reasonable results
            for (int degreeSample = 0; degreeSample < 200; ++degreeSample) {
                // Generate a graph
                // might require multiple tries
                for (int i = 1; ; ++i) {
                    std::generate(ds.begin(), ds.end(),
                                  [&degDist, &rng] { return degDist(rng); });
                    // First make the sum even
                    unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
                    if (sum % 2) {
                        continue;
                        // Can we do this: ??
                        ds.back()++;
                    }

                    if (g.createFromDegreeSequence(ds))
                        break;

                    // When 10 tries have not worked, output a warning
                    if (i % 10 == 0) {
                        std::cerr << "Warning: could not create graph from "
                                     "degree sequence. Trying again...\n";
                    }
                }

                std::cout << "Running n = " << numVertices << ", tau = " << tau
                          << "." << std::flush;

                //
                // Test the GCM1 and GCM2 success rate
                //
                long long gcmTris1 = 0;
                long long gcmTris2 = 0;
                int successrate1 = 0;
                int successrate2 = 0;
                for (int i = 0; i < 100; ++i) {
                    Graph gtemp;
                    // Take new highest degree every time
                    if (greedyConfigurationModel(ds, gtemp, rng, false)) {
                        ++successrate1;
                        gcmTris1 += gtemp.countTriangles();
                    }
                    // Finish all pairings of highest degree first
                    if (greedyConfigurationModel(ds, gtemp, rng, true)) {
                        ++successrate2;
                        gcmTris2 += gtemp.countTriangles();
                    }
                }

                SwitchChain chain;
                if (!chain.initialize(g)) {
                    std::cerr << "Could not initialize Markov chain.\n";
                    return 1;
                }

                int mixingTime = (32.0f - 20.0f * (tau - 2.0f)) * numVertices;
                constexpr int measurements = 20;
                constexpr int measureSkip = 200;

                int movesDone = 0;

                long long trianglesTotal = 0;

                std::cout << "  .. \t" << std::flush;

                for (int i = 0; i < mixingTime; ++i) {
                    if (chain.doMove())
                        ++movesDone;
                }
                for (int i = 0; i < measurements; ++i) {
                    for (int j = 0; j < measureSkip; ++j)
                        if (chain.doMove())
                            ++movesDone;
                    trianglesTotal += chain.g.countTriangles();
                }

                std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
                          << " moves succeeded ("
                          << 100.0f * float(movesDone) /
                                 float(mixingTime + measurements * measureSkip)
                          << "%).";
                //std::cout << std::endl;

                if (outputComma)
                    outfile << ',' << '\n';
                outputComma = true;

                float avgTriangles =
                    float(trianglesTotal) / float(measurements);
                outfile << '{';
                outfile << '{' << numVertices << ',' << tau << '}';
                outfile << ',' << avgTriangles;
                outfile << ',' << '{' << gcmTris1 << ',' << successrate1 << '}';
                outfile << ',' << '{' << gcmTris2 << ',' << successrate2 << '}';
                outfile << '}' << std::flush;

                std::cout << std::endl;
            }
        }
    }
    outfile << '}';
    return 0;
}