Files
@ 32c10aa21482
Branch filter:
Location: AENC/switchchain/cpp/switchchain_exponent.cpp
32c10aa21482
4.1 KiB
text/x-c++src
Move GCM construction to separate file
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | #include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
int main() {
// Generate a random degree sequence
std::mt19937 rng(std::random_device{}());
// Goal:
// Degrees follow a power-law distribution with some parameter tau
// Expect: #tri = const * n^{ something }
// The goal is to find the 'something' by finding the number of triangles
// for different values of n and tau
float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
Graph g;
std::ofstream outfile("graphdata_exponent_hightau.m");
outfile << '{';
bool outputComma = false;
for (int numVertices = 1000; numVertices <= 10000; numVertices += 1000) {
for (float tau : tauValues) {
DegreeSequence ds(numVertices);
powerlaw_distribution degDist(tau, 1, numVertices);
//std::poisson_distribution<> degDist(12);
// For a single n,tau take samples over several instances of
// the degree distribution.
// 500 samples seems to give reasonable results
for (int degreeSample = 0; degreeSample < 2000; ++degreeSample) {
// Generate a graph
// might require multiple tries
for (int i = 1; ; ++i) {
std::generate(ds.begin(), ds.end(),
[°Dist, &rng] { return degDist(rng); });
// First make the sum even
unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
if (sum % 2) {
continue;
// Can we do this: ??
ds.back()++;
}
if (g.createFromDegreeSequence(ds))
break;
// When 10 tries have not worked, output a warning
if (i % 10 == 0) {
std::cerr << "Warning: could not create graph from "
"degree sequence. Trying again...\n";
}
}
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running n = " << numVertices << ", tau = " << tau
<< ". \t" << std::flush;
int mixingTime = 32*(32.0f - 15.0f*(tau - 2.0f)) * numVertices; //40000;
constexpr int measurements = 50;
constexpr int measureSkip =
200; // Take a sample every ... steps
int movesDone = 0;
long long trianglesTotal = 0;
for (int i = 0; i < mixingTime; ++i) {
if (chain.doMove())
++movesDone;
}
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (chain.doMove())
++movesDone;
trianglesTotal += chain.g.countTriangles();
}
std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
<< " moves succeeded ("
<< 100.0f * float(movesDone) /
float(mixingTime + measurements * measureSkip)
<< "%).";
//std::cout << std::endl;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
float avgTriangles =
float(trianglesTotal) / float(measurements);
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << avgTriangles << '}' << std::flush;
std::cout << std::endl;
}
}
}
outfile << '}';
return 0;
}
|