Files @ b194b811d0cc
Branch filter:

Location: CSY/reowolf/src/protocol/parser/visitor.rs

b194b811d0cc 27.6 KiB application/rls-services+xml Show Annotation Show as Raw Download as Raw
mh
WIP on rewriting parts of parser
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
use crate::protocol::ast::*;
use crate::protocol::inputsource::*;
use crate::protocol::library;
use crate::protocol::parser::{symbol_table::*, type_table::*, LexedModule};

type Unit = ();
pub(crate) type VisitorResult = Result<Unit, ParseError2>;

pub(crate) struct Ctx<'p> {
    heap: &'p mut Heap,
    module: &'p LexedModule,
    symbols: &'p mut SymbolTable,
    types: &'p mut TypeTable,
}

pub(crate) trait Visitor2 {
    // Entry point
    fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
        let mut def_index = 0;
        loop {
            let definition_id = {
                let root = &ctx.heap[ctx.module.root_id];
                if def_index >= root.definitions.len() {
                    return Ok(())
                }

                root.definitions[def_index]
            };

            self.visit_definition(ctx, definition_id)
        }
    }

    // Definitions
    // --- enum matching
    fn visit_definition(&mut self, ctx: &mut Ctx, id: DefinitionId) -> VisitorResult {
        match &ctx.heap[id] {
            Definition::Enum(def) => self.visit_enum_definition(ctx, def.this),
            Definition::Struct(def) => self.visit_struct_definition(ctx, def.this),
            Definition::Component(def) => self.visit_component_definition(ctx, def.this),
            Definition::Function(def) => self.visit_function_definition(ctx, def.this)
        }
    }

    // --- enum variant handling
    fn visit_enum_definition(&mut self, _ctx: &mut Ctx, id: EnumId) -> VisitorResult { Ok(()) }
    fn visit_struct_definition(&mut self, _ctx: &mut Ctx, id: StructId) -> VisitorResult { Ok(()) }
    fn visit_component_definition(&mut self, _ctx: &mut Ctx, id: ComponentId) -> VisitorResult { Ok(()) }
    fn visit_function_definition(&mut self, _ctx: &mut Ctx, id: FunctionId) -> VisitorResult { Ok(()) }

    // Statements
    // --- enum matching
    fn visit_stmt(&mut self, ctx: &mut Ctx, id: StatementId) -> VisitorResult {
        match &ctx.heap[id] {
            Statement::Block(stmt) => self.visit_block_stmt(ctx, stmt.this),
            Statement::Local(stmt) => self.visit_local_stmt(ctx, stmt.this),
            Statement::Skip(stmt) => self.visit_skip_stmt(ctx, stmt.this),
            Statement::Labeled(stmt) => self.visit_labeled_stmt(ctx, stmt.this),
            Statement::If(stmt) => self.visit_if_stmt(ctx, stmt.this),
            Statement::EndIf(_stmt) => Ok(()),
            Statement::While(stmt) => self.visit_while_stmt(ctx, stmt.this),
            Statement::EndWhile(_stmt) => Ok(()),
            Statement::Break(stmt) => self.visit_break_stmt(ctx, stmt.this),
            Statement::Continue(stmt) => self.visit_continue_stmt(ctx, stmt.this),
            Statement::Synchronous(stmt) => self.visit_synchronous_stmt(ctx, stmt.this),
            Statement::EndSynchronous(_stmt) => Ok(()),
            Statement::Return(stmt) => self.visit_return_stmt(ctx, stmt.this),
            Statement::Assert(stmt) => self.visit_assert_stmt(ctx, stmt.this),
            Statement::Goto(stmt) => self.visit_goto_stmt(ctx, stmt.this),
            Statement::New(stmt) => self.visit_new_stmt(ctx, stmt.this),
            Statement::Put(stmt) => self.visit_put_stmt(ctx, stmt.this),
            Statement::Expression(stmt) => self.visit_expr_stmt(ctx, stmt.this),
        }
    }

    fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult {
        match &ctx.heap[id] {
            LocalStatement::Channel(stmt) => self.visit_local_channel_stmt(ctx, stmt.this),
            LocalStatement::Memory(stmt) => self.visit_local_memory_stmt(ctx, stmt.this),
        }
    }

    // --- enum variant handling
    fn visit_block_stmt(&mut self, _ctx: &mut Ctx, _id: BlockStatementId) -> VisitorResult { Ok(()) }
    fn visit_local_memory_stmt(&mut self, _ctx: &mut Ctx, _id: MemoryStatementId) -> VisitorResult { Ok(()) }
    fn visit_local_channel_stmt(&mut self, _ctx: &mut Ctx, _id: ChannelStatementId) -> VisitorResult { Ok(()) }
    fn visit_skip_stmt(&mut self, _ctx: &mut Ctx, _id: SkipStatementId) -> VisitorResult { Ok(()) }
    fn visit_labeled_stmt(&mut self, _ctx: &mut Ctx, _id: LabeledStatementId) -> VisitorResult { Ok(()) }
    fn visit_if_stmt(&mut self, _ctx: &mut Ctx, _id: IfStatementId) -> VisitorResult { Ok(()) }
    fn visit_while_stmt(&mut self, _ctx: &mut Ctx, _id: WhileStatementId) -> VisitorResult { Ok(()) }
    fn visit_break_stmt(&mut self, _ctx: &mut Ctx, _id: BreakStatementId) -> VisitorResult { Ok(()) }
    fn visit_continue_stmt(&mut self, _ctx: &mut Ctx, _id: ContinueStatementId) -> VisitorResult { Ok(()) }
    fn visit_synchronous_stmt(&mut self, _ctx: &mut Ctx, _id: SynchronousStatementId) -> VisitorResult { Ok(()) }
    fn visit_return_stmt(&mut self, _ctx: &mut Ctx, _id: ReturnStatementId) -> VisitorResult { Ok(()) }
    fn visit_assert_stmt(&mut self, _ctx: &mut Ctx, _id: AssertStatementId) -> VisitorResult { Ok(()) }
    fn visit_goto_stmt(&mut self, _ctx: &mut Ctx, _id: GotoStatementId) -> VisitorResult { Ok(()) }
    fn visit_new_stmt(&mut self, _ctx: &mut Ctx, _id: NewStatementId) -> VisitorResult { Ok(()) }
    fn visit_put_stmt(&mut self, _ctx: &mut Ctx, _id: PutStatementId) -> VisitorResult { Ok(()) }
    fn visit_expr_stmt(&mut self, _ctx: &mut Ctx, _id: ExpressionStatementId) -> VisitorResult { Ok(()) }

    // Expressions
    // --- enum matching
    fn visit_expr(&mut self, ctx: &mut Ctx, id: ExpressionId) -> VisitorResult {
        match &ctx.heap[id] {
            Expression::Assignment(expr) => self.visit_assignment_expr(ctx, expr.this),
            Expression::Conditional(expr) => self.visit_conditional_expr(ctx, expr.this),
            Expression::Binary(expr) => self.visit_binary_expr(ctx, expr.this),
            Expression::Unary(expr) => self.visit_unary_expr(ctx, expr.this),
            Expression::Indexing(expr) => self.visit_indexing_expr(ctx, expr.this),
            Expression::Slicing(expr) => self.visit_slicing_expr(ctx, expr.this),
            Expression::Select(expr) => self.visit_select_expr(ctx, expr.this),
            Expression::Array(expr) => self.visit_array_expr(ctx, expr.this),
            Expression::Constant(expr) => self.visit_constant_expr(ctx, expr.this),
            Expression::Call(expr) => self.visit_call_expr(ctx, expr.this),
            Expression::Variable(expr) => self.visit_variable_expr(ctx, expr.this),
        }
    }

    fn visit_assignment_expr(&mut self, _ctx: &mut Ctx, _id: AssignmentExpressionId) -> VisitorResult { Ok(()) }
    fn visit_conditional_expr(&mut self, _ctx: &mut Ctx, _id: ConditionalExpressionId) -> VisitorResult { Ok(()) }
    fn visit_binary_expr(&mut self, _ctx: &mut Ctx, _id: BinaryExpressionId) -> VisitorResult { Ok(()) }
    fn visit_unary_expr(&mut self, _ctx: &mut Ctx, _id: UnaryExpressionId) -> VisitorResult { Ok(()) }
    fn visit_indexing_expr(&mut self, _ctx: &mut Ctx, _id: IndexingExpressionId) -> VisitorResult { Ok(()) }
    fn visit_slicing_expr(&mut self, _ctx: &mut Ctx, _id: SlicingExpressionId) -> VisitorResult { Ok(()) }
    fn visit_select_expr(&mut self, _ctx: &mut Ctx, _id: SelectExpressionId) -> VisitorResult { Ok(()) }
    fn visit_array_expr(&mut self, _ctx: &mut Ctx, _id: ArrayExpressionId) -> VisitorResult { Ok(()) }
    fn visit_constant_expr(&mut self, _ctx: &mut Ctx, _id: ConstantExpressionId) -> VisitorResult { Ok(()) }
    fn visit_call_expr(&mut self, _ctx: &mut Ctx, _id: CallExpressionId) -> VisitorResult { Ok(()) }
    fn visit_variable_expr(&mut self, _ctx: &mut Ctx, _id: VariableExpressionId) -> VisitorResult { Ok(()) }
}

enum DefinitionType {
    Primitive,
    Composite,
    Function
}

struct NoNameYet {
    in_sync: Option<SynchronousStatementId>,
    in_while: Option<WhileStatementId>,
    cur_scope: Option<Scope>,
    def_type: DefinitionType,
    performing_breadth_pass: bool,
    // Keeping track of relative position in block in the breadth-first pass.
    // May not correspond to block.statement[index] if any statements are
    // inserted after the breadth-pass
    relative_pos_in_block: u32,
    // Single buffer of statement IDs that we want to traverse in a block.
    // Required to work around Rust borrowing rules
    // TODO: Maybe remove this in the future
    statement_buffer: Vec<StatementId>,
    // Statements to insert after the breadth pass in a single block
    insert_buffer: Vec<(u32, StatementId)>,
}

impl NoNameYet {
    fn new() -> Self {
        Self{
            in_sync: None,
            in_while: None,
            cur_scope: None,
            def_type: DefinitionType::Primitive,
            performing_breadth_pass: false,
            relative_pos_in_block: 0,
            statement_buffer: Vec::with_capacity(256),
            insert_buffer: Vec::with_capacity(32),
        }
    }

    fn reset_state(&mut self) {
        self.in_sync = None;
        self.in_while = None;
        self.cur_scope = None;
        self.def_type = DefinitionType::Primitive;
        self.relative_pos_in_block = 0;
        self.performing_breadth_pass = false;
        self.statement_buffer.clear();
        self.insert_buffer.clear();
    }
}

impl Visitor2 for NoNameYet {
    //--------------------------------------------------------------------------
    // Definition visitors
    //--------------------------------------------------------------------------

    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentId) -> VisitorResult {
        self.reset_state();

        let block_id = {
            let def = &ctx.heap[id];
            match def.variant {
                ComponentVariant::Primitive => self.def_type = DefinitionType::Primitive,
                ComponentVariant::Composite => self.def_type = DefinitionType::Composite,
            }

            let body = ctx.heap[def.body].as_block_mut();

            self.statement_buffer.extend_from_slice(&body.statements);
            self.statement_stack_indices.push(0);
            body.this
        };

        self.cur_scope = Some(Scope {
            variant: ScopeVariant::Definition(id.upcast()),
            parent: None,
        });

        self.performing_breadth_pass = true;
        self.visit_block_stmt(ctx, block_id)?;
        self.performing_breadth_pass = false;
        self.visit_block_stmt(ctx, block_id)
    }

    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionId) -> VisitorResult {
        self.reset_state();

        // Set internal statement indices
        let block_id = {
            let def = &ctx.heap[id];
            self.def_type = DefinitionType::Function;
            let body = ctx.heap[def.body].as_block_mut();

            self.statement_buffer.extend_from_slice(&body.statements);
            self.statement_stack_indices.push(0);
            body.this
        };

        self.cur_scope = Some(Scope {
            variant: ScopeVariant::Definition(id.upcast()),
            parent: None,
        });

        self.performing_breadth_pass = true;
        self.visit_block_stmt(ctx, block_id)?;
        self.performing_breadth_pass = false;
        self.visit_block_stmt(ctx, block_id)
    }

    //--------------------------------------------------------------------------
    // Statement visitors
    //--------------------------------------------------------------------------

    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            // Our parent is performing a breadth-pass. We do this simple stuff
            // here
            let body = &mut ctx.heap[id];
            body.parent_scope = self.cur_scope.clone();
            body.relative_pos_in_parent = self.relative_pos_in_block;
            return Ok(())
        }

        // We may descend into children of this block. However, this is
        // where we first perform a breadth-first pass
        self.performing_breadth_pass = true;
        self.cur_scope = Some(Scope::Block(id));
        let first_statement_index = self.statement_buffer.len();

        {
            let body = &ctx.heap[id];
            self.statement_buffer.extend_from_slice(&body.statements);
        }

        let mut stmt_index = first_statement_index;
        while stmt_index < self.statement_buffer.len() {
            self.relative_pos_in_block = (stmt_index - first_statement_index) as u32;
            self.visit_stmt(ctx, self.statement_buffer[stmt_index])?;
            stmt_index += 1;
        }

        if !self.insert_buffer.is_empty() {
            let body = &mut ctx.heap[id];
            for (pos, stmt) in self.insert_buffer.drain(..) {
                body.statements.insert(pos as usize, stmt);
            }
        }

        // And the depth pass
        self.performing_breadth_pass = false;
        stmt_index = first_statement_index;
        while stmt_index < self.statement_buffer.len() {
            self.visit_stmt(ctx, self.statement_buffer[stmt_index])?;
            stmt_index += 1;
        }

        // Pop statement buffer
        debug_assert!(self.insert_buffer.is_empty(), "insert buffer not empty after depth pass");
        self.statement_buffer.truncate(first_statement_index);

        Ok(())
    }

    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let stmt = &ctx.heap[id];
            stmt.relative_pos_in_block = self.relative_pos_in_block;
            self.checked_local_add(ctx, stmt.variable)?;
        }

        self.visit_expr(ctx, ctx.heap[id].initial)?;

        Ok(())
    }

    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            // Retrieve scope
            let scope = self.cur_scope.as_ref().unwrap();
            debug_assert!(scope.statement.is_some(), "expected scope statement at labeled stmt");
            debug_assert_eq!(
                scope.variant == ScopeVariant::Synchronous,
                self.in_sync.is_some(),
                "in synchronous scope variant, but 'in_sync' not set"
            );

            // Add label to block lookup
            self.checked_label_add(ctx, id)?;

            // Modify labeled statement itself
            let labeled = &mut ctx.heap[id];
            labeled.relative_pos_in_block = self.relative_pos_in_block;
            labeled.in_sync = if scope.variant == ScopeVariant::Synchronous {
                self.in_sync.clone()
            } else {
                None
            };
        }

        let body_id = ctx.heap[id].body;
        self.visit_stmt(ctx, body_id)?;

        Ok(())
    }

    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let position = ctx.heap[id].position;
            let end_if_id = ctx.heap.alloc_end_if_statement(|this| {
                EndIfStatement {
                    this,
                    start_if: id,
                    position,
                    next: None,
                }
            });
            let stmt = &mut ctx.heap[id];
            stmt.end_if = Some(end_if_id);
            self.insert_buffer.push((self.relative_pos_in_block + 1, end_if_id.upcast()));
        }

        // Traverse expression and bodies
        let (test_id, true_id, false_id) = {
            let stmt = &ctx.heap[id];
            (stmt.test, stmt.true_body, stmt.false_body)
        };
        self.visit_expr(ctx, test_id)?;
        self.visit_stmt(ctx, true_id)?;
        self.visit_stmt(ctx, false_id)?;

        Ok(())
    }

    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let scope = self.cur_scope.as_ref().unwrap();
            let position = ctx.heap[id].position;
            debug_assert_eq!(
                scope.variant == ScopeVariant::Synchronous,
                self.in_sync.is_some(),
                "in synchronous scope variant, but 'in_sync' not set"
            );
            let end_while_id = ctx.heap.alloc_end_while_statement(|this| {
                EndWhileStatement {
                    this,
                    start_while: Some(id),
                    position,
                    next: None,
                }
            });
            let stmt = &mut ctx.heap[id];
            stmt.end_while = Some(end_while_id);
            stmt.in_sync = self.in_sync.clone();

            self.insert_buffer.push((self.relative_pos_in_block + 1, end_while_id.upcast()));
        }

        let (test_id, body_id) = {
            let stmt = &ctx.heap[id];
            (stmt.test, stmt.body)
        };
        let old_while = self.in_while.replace(id);
        self.visit_expr(ctx, test_id)?;
        self.visit_stmt(ctx, body_id)?;
        self.in_while = old_while;

        Ok(())
    }

    fn visit_break_stmt(&mut self, ctx: &mut Ctx, id: BreakStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            // Should be able to resolve break statements with a label in the
            // breadth pass, no need to do after resolving all labels
            let target_end_while = {
                let stmt = &ctx.heap[id];
                let target_while_id = self.resolve_break_or_continue_target(ctx, stmt.position, &stmt.label)?;
                let target_while = &ctx.heap[target_while_id];
                debug_assert!(target_while.end_while.is_some());
                target_while.end_while.unwrap()
            };

            let stmt = &mut ctx.heap[id];
            stmt.target = Some(target_end_while);
        }

        Ok(())
    }

    fn visit_continue_stmt(&mut self, ctx: &mut Ctx, id: ContinueStatementId) -> VisitorResult {
        if self.performing_breadth_pass {
            let target_while_id = {
                let stmt = &ctx.heap[id];
                self.resolve_break_or_continue_target(ctx, stmt.position, &stmt.label)?
            };

            let stmt = &mut ctx.heap[id];
            stmt.target = Some(target_while_id)
        }

        Ok(())
    }

    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
        let stmt = &ctx.heap[id];
        stmt.
    }
}

impl NoNameYet {
    //--------------------------------------------------------------------------
    // Utilities
    //--------------------------------------------------------------------------

    fn checked_local_add(&mut self, ctx: &mut Ctx, id: LocalId) -> Result<(), ParseError2> {
        debug_assert!(self.cur_scope.is_some());

        // Make sure we do not conflict with any global symbols
        {
            let ident = &ctx.heap[id].identifier;
            if let Some(symbol) = ctx.symbols.resolve_symbol(ctx.module.root_id, &ident.value) {
                return Err(
                    ParseError2::new_error(&ctx.module.source, ident.position, "Local variable declaration conflicts with symbol")
                        .with_postfixed_info(&ctx.module.source, symbol.position, "Conflicting symbol is found here")
                );
            }
        }

        // Make sure we do not shadow any variables in any of the scopes. Note
        // that variables in parent scopes may be declared later
        let local = &ctx.heap[id];
        let mut scope = self.cur_scope.as_ref().unwrap();
        let mut local_relative_pos = self.relative_pos_in_block;

        loop {
            debug_assert!(scope.is_block(), "scope is not a block");
            let block = &ctx.heap[scope.to_block()];
            for other_local_id in &block.locals {
                let other_local = &ctx.heap[*other_local_id];
                // Position check in case another variable with the same name
                // is defined in a higher-level scope, but later than the scope
                // in which the current variable resides.
                if local_relative_pos >= other_local.relative_pos_in_block && local.identifier.value == other_local.identifier.pos {
                    // Collision within this scope
                    return Err(
                        ParseError2::new_error(&ctx.module.source, local.position, "Local variable name conflicts with another variable")
                            .with_postfixed_info(&ctx.module.source, other_local.position, "Previous variable is found here")
                    );
                }
            }

            // Current scope is fine, move to parent scope if any
            debug_assert!(scope.parent.is_some(), "block scope does not have a parent");
            scope = scope.parent.as_ref().unwrap();
            if let ScopeVariant::Definition(definition_id) = scope.variant {
                // At outer scope, check parameters of function/component
                for parameter_id in ctx.heap[definition_id].parameters() {
                    let parameter = &ctx.heap[*parameter_id];
                    if local.identifier.value == parameter.identifier.value {
                        return Err(
                            ParseError2::new_error(&ctx.module.source, local.position, "Local variable name conflicts with parameter")
                                .with_postfixed_info(&ctx.module.source, parameter.position, "Parameter definition is found here")
                        );
                    }
                }

                break;
            }

            // If here, then we are dealing with a block-like parent block
            local_relative_pos = ctx.heap[scope.to_block()].relative_pos_in_parent;
        }

        // No collisions at all
        let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()];
        block.locals.push(id);

        Ok(())
    }

    fn checked_label_add(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> Result<(), ParseError2> {
        debug_assert!(self.cur_scope.is_some());

        // Make sure label is not defined within the current scope or any of the
        // parent scope.
        let label = &ctx.heap[id];
        let mut scope = self.cur_scope.as_ref().unwrap();

        loop {
            debug_assert!(scope.is_block(), "scope is not a block");
            let block = &ctx.heap[scope.to_block()];
            for other_label_id in &block.labels {
                let other_label = &ctx.heap[*other_label_id];
                if other_label.label.value == label.label.value {
                    // Collision
                    return Err(
                        ParseError2::new_error(&ctx.module.source, label.position, "Label name conflicts with another label")
                            .with_postfixed_info(&ctx.module.source, other_label.position, "Other label is found here")
                    );
                }
            }

            debug_assert!(scope.parent.is_some(), "block scope does not have a parent");
            scope = scope.parent.as_ref().unwrap();
            if !scope.is_block() {
                break;
            }
        }

        // No collisions
        let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()];
        block.labels.push(id);

        Ok(())
    }

    fn find_label(&self, ctx: &Ctx, identifier: &Identifier) -> Result<LabeledStatementId, ParseError2> {
        debug_assert!(self.cur_scope.is_some());

        let mut scope = self.cur_scope.as_ref().unwrap();
        loop {
            debug_assert!(scope.is_block(), "scope is not a block");
            let block = &ctx.heap[scope.to_block()];
            for label_id in &block.labels {
                let label = &ctx.heap[*label_id];
                if label.label.value == identifier.value {
                    return Ok(*label_id);
                }
            }

            debug_assert!(scope.parent.is_some(), "block scope does not have a parent");
            scope = scope.parent.as_ref().unwrap();
            if !scope.is_block() {
                return Err(ParseError2::new_error(&ctx.module.source, identifier.position, "Could not find this label"));
            }
        }
    }

    /// This function will check if the provided while statement ID has a block
    /// statement that is one of our current parents.
    fn has_parent_while_scope(&self, ctx: &Ctx, id: WhileStatementId) -> bool {
        debug_assert!(self.cur_scope.is_some());
        let mut scope = self.cur_scope.as_ref().unwrap();
        let while_stmt = &ctx.heap[id];
        loop {
            debug_assert!(scope.is_block());
            let block = scope.to_block();
            if while_stmt.body == block.upcast() {
                return true;
            }

            debug_assert!(scope.parent.is_some(), "block scope does not have a parent");
            scope = scope.parent.as_ref().unwrap();
            if !scope.is_block() {
                return false;
            }
        }
    }

    /// This function should be called while dealing with break/continue
    /// statements. It will try to find the targeted while statement, using the
    /// target label if provided. If a valid target is found then the loop's
    /// ID will be returned, otherwise a parsing error is constructed.
    /// The provided input position should be the position of the break/continue
    /// statement.
    fn resolve_break_or_continue_target(&self, ctx: &Ctx, position: InputPosition, label: &Option<Identifier>) -> Result<WhileStatementId, ParseError2> {
        let target = match label {
            Some(label) => {
                let target_id = self.find_label(ctx, label)?;

                // Make sure break target is a while statement
                let target = &ctx.heap[target_id];
                if let Statement::While(target_stmt) = &target.body {
                    // Even though we have a target while statement, the break might not be
                    // present underneath this particular labeled while statement
                    if !self.has_parent_while_scope(ctx, target_stmt.this) {
                        ParseError2::new_error(&ctx.module.source, label.position, "Break statement is not nested under the target label's while statement")
                            .with_postfixed_info(&ctx.module.source, target.position, "The targeted label is found here");
                    }

                    target_stmt.this
                } else {
                    return Err(
                        ParseError2::new_error(&ctx.module.source, label.position, "Incorrect break target label, it must target a while loop")
                            .with_postfixed_info(&ctx.module.source, target.position, "The targeted label is found here")
                    );
                }
            },
            None => {
                // Use the enclosing while statement, the break must be
                // nested within that while statement
                if self.in_while.is_none() {
                    return Err(
                        ParseError2::new_error(&ctx.module.source, position, "Break statement is not nested under a while loop")
                    );
                }

                self.in_while.unwrap()
            }
        };

        // We have a valid target for the break statement. But we need to
        // make sure we will not break out of a synchronous block
        {
            let target_while = &ctx.heap[target];
            if target_while.in_sync != self.in_sync {
                // Break is nested under while statement, so can only escape a
                // sync block if the sync is nested inside the while statement.
                debug_assert!(self.in_sync.is_some());
                let sync_stmt = &ctx.heap[self.in_sync.unwrap()];
                return Err(
                    ParseError2::new_error(&ctx.module.source, position, "Break may not escape the surrounding synchronous block")
                        .with_postfixed_info(&ctx.module.source, target_while.position, "The break escapes out of this loop")
                        .with_postfixed_info(&ctx.module.source, sync_stmt.position, "And would therefore escape this synchronous block")
                );
            }
        }

        Ok(target)
    }
}