Files
@ e7e7211531c8
Branch filter:
Location: CSY/reowolf/src/protocol/parser/pass_rewriting.rs
e7e7211531c8
30.3 KiB
application/rls-services+xml
Initial error-handling tests
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 | use crate::collections::*;
use crate::protocol::*;
use super::visitor::*;
pub(crate) struct PassRewriting {
current_scope: ScopeId,
current_procedure_id: ProcedureDefinitionId,
definition_buffer: ScopedBuffer<DefinitionId>,
statement_buffer: ScopedBuffer<StatementId>,
call_expr_buffer: ScopedBuffer<CallExpressionId>,
expression_buffer: ScopedBuffer<ExpressionId>,
scope_buffer: ScopedBuffer<ScopeId>,
}
impl PassRewriting {
pub(crate) fn new() -> Self {
Self{
current_scope: ScopeId::new_invalid(),
current_procedure_id: ProcedureDefinitionId::new_invalid(),
definition_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
statement_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
call_expr_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
expression_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
scope_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
}
}
}
impl Visitor for PassRewriting {
fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
let module = ctx.module();
debug_assert_eq!(module.phase, ModuleCompilationPhase::Typed);
let root_id = module.root_id;
let root = &ctx.heap[root_id];
let definition_section = self.definition_buffer.start_section_initialized(&root.definitions);
for definition_index in 0..definition_section.len() {
let definition_id = definition_section[definition_index];
self.visit_definition(ctx, definition_id)?;
}
definition_section.forget();
ctx.module_mut().phase = ModuleCompilationPhase::Rewritten;
return Ok(())
}
// --- Visiting procedures
fn visit_procedure_definition(&mut self, ctx: &mut Ctx, id: ProcedureDefinitionId) -> VisitorResult {
let definition = &ctx.heap[id];
if definition.source.is_builtin() {
return Ok(());
}
let body_id = definition.body;
self.current_scope = definition.scope;
self.current_procedure_id = id;
return self.visit_block_stmt(ctx, body_id);
}
// --- Visiting statements (that are not the select statement)
fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
let block_stmt = &ctx.heap[id];
let stmt_section = self.statement_buffer.start_section_initialized(&block_stmt.statements);
self.current_scope = block_stmt.scope;
for stmt_idx in 0..stmt_section.len() {
self.visit_stmt(ctx, stmt_section[stmt_idx])?;
}
stmt_section.forget();
return Ok(())
}
fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
let labeled_stmt = &ctx.heap[id];
let body_id = labeled_stmt.body;
return self.visit_stmt(ctx, body_id);
}
fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
let if_stmt = &ctx.heap[id];
let true_case = if_stmt.true_case;
let false_case = if_stmt.false_case;
self.current_scope = true_case.scope;
self.visit_stmt(ctx, true_case.body)?;
if let Some(false_case) = false_case {
self.current_scope = false_case.scope;
self.visit_stmt(ctx, false_case.body)?;
}
return Ok(())
}
fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
let while_stmt = &ctx.heap[id];
let body_id = while_stmt.body;
self.current_scope = while_stmt.scope;
return self.visit_stmt(ctx, body_id);
}
fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
let sync_stmt = &ctx.heap[id];
let body_id = sync_stmt.body;
self.current_scope = sync_stmt.scope;
return self.visit_stmt(ctx, body_id);
}
// --- Visiting the select statement
fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
// Utility for the last stage of rewriting process. Note that caller
// still needs to point the end of the if-statement to the end of the
// replacement statement of the select statement.
fn transform_select_case_code(
ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId,
select_id: SelectStatementId, case_index: usize,
select_var_id: VariableId, select_var_type_id: TypeIdReference
) -> (IfStatementId, EndIfStatementId, ScopeId) {
// Retrieve statement IDs associated with case
let case = &ctx.heap[select_id].cases[case_index];
let case_guard_id = case.guard;
let case_body_id = case.body;
let case_scope_id = case.scope;
// Create the if-statement for the result of the select statement
let compare_expr_id = create_ast_equality_comparison_expr(ctx, containing_procedure_id, select_var_id, select_var_type_id, case_index as u64);
let true_case = IfStatementCase{
body: case_guard_id, // which is linked up to the body
scope: case_scope_id,
};
let (if_stmt_id, end_if_stmt_id) = create_ast_if_stmt(ctx, compare_expr_id.upcast(), true_case, None);
// Link up body statement to end-if
set_ast_statement_next(ctx, case_body_id, end_if_stmt_id.upcast());
return (if_stmt_id, end_if_stmt_id, case_scope_id);
}
// Precreate the block that will end up containing all of the
// transformed statements. Also precreate the scope associated with it
let (outer_block_id, outer_end_block_id, outer_scope_id) =
create_ast_block_stmt(ctx, Vec::new());
// The "select" and the "end select" statement will act like trampolines
// that jump to the replacement block. So set the child/parent
// relationship already.
// --- for the statements
let select_stmt = &mut ctx.heap[id];
select_stmt.next = outer_block_id.upcast();
let end_select_stmt_id = select_stmt.end_select;
let select_stmt_relative_pos = select_stmt.relative_pos_in_parent;
let outer_end_block_stmt = &mut ctx.heap[outer_end_block_id];
outer_end_block_stmt.next = end_select_stmt_id.upcast();
// --- for the scopes
link_new_child_to_existing_parent_scope(ctx, &mut self.scope_buffer, self.current_scope, outer_scope_id, select_stmt_relative_pos);
// Create statements that will create temporary variables for all of the
// ports passed to the "get" calls in the select case guards.
let select_stmt = &ctx.heap[id];
let total_num_cases = select_stmt.cases.len();
let mut total_num_ports = 0;
let end_select_stmt_id = select_stmt.end_select;
let _end_select = &ctx.heap[end_select_stmt_id];
// Put heap IDs into temporary buffers to handle borrowing rules
let mut call_id_section = self.call_expr_buffer.start_section();
let mut expr_id_section = self.expression_buffer.start_section();
for case in select_stmt.cases.iter() {
total_num_ports += case.involved_ports.len();
for (call_id, expr_id) in case.involved_ports.iter().copied() {
call_id_section.push(call_id);
expr_id_section.push(expr_id);
}
}
// Transform all of the call expressions by takings its argument (the
// port from which we `get`) and turning it into a temporary variable.
let mut transformed_stmts = Vec::with_capacity(total_num_ports); // TODO: Recompute this preallocated length, put assert at the end
let mut locals = Vec::with_capacity(total_num_ports);
for port_var_idx in 0..call_id_section.len() {
let get_call_expr_id = call_id_section[port_var_idx];
let port_expr_id = expr_id_section[port_var_idx];
let port_type_index = ctx.heap[port_expr_id].type_index();
let port_type_ref = TypeIdReference::IndirectSameAsExpr(port_type_index);
// Move the port expression such that it gets assigned to a temporary variable
let variable_id = create_ast_variable(ctx, outer_scope_id);
let variable_decl_stmt_id = create_ast_variable_declaration_stmt(ctx, self.current_procedure_id, variable_id, port_type_ref, port_expr_id);
// Replace the original port expression in the call with a reference
// to the replacement variable
let variable_expr_id = create_ast_variable_expr(ctx, self.current_procedure_id, variable_id, port_type_ref);
let call_expr = &mut ctx.heap[get_call_expr_id];
call_expr.arguments[0] = variable_expr_id.upcast();
transformed_stmts.push(variable_decl_stmt_id.upcast().upcast());
locals.push((variable_id, port_type_ref));
}
// Insert runtime calls that facilitate the semantics of the select
// block.
// Create the call that indicates the start of the select block
{
let num_cases_expression_id = create_ast_literal_integer_expr(ctx, self.current_procedure_id, total_num_cases as u64, ctx.arch.uint32_type_id);
let num_ports_expression_id = create_ast_literal_integer_expr(ctx, self.current_procedure_id, total_num_ports as u64, ctx.arch.uint32_type_id);
let arguments = vec![
num_cases_expression_id.upcast(),
num_ports_expression_id.upcast()
];
let call_expression_id = create_ast_call_expr(ctx, self.current_procedure_id, Method::SelectStart, &mut self.expression_buffer, arguments);
let call_statement_id = create_ast_expression_stmt(ctx, call_expression_id.upcast());
transformed_stmts.push(call_statement_id.upcast());
}
// Create calls for each select case that will register the ports that
// we are waiting on at the runtime.
{
let mut total_port_index = 0;
for case_index in 0..total_num_cases {
let case = &ctx.heap[id].cases[case_index];
let case_num_ports = case.involved_ports.len();
for case_port_index in 0..case_num_ports {
// Arguments to runtime call
let (port_variable_id, port_variable_type) = locals[total_port_index]; // so far this variable contains the temporary variables for the port expressions
let case_index_expr_id = create_ast_literal_integer_expr(ctx, self.current_procedure_id, case_index as u64, ctx.arch.uint32_type_id);
let port_index_expr_id = create_ast_literal_integer_expr(ctx, self.current_procedure_id, case_port_index as u64, ctx.arch.uint32_type_id);
let port_variable_expr_id = create_ast_variable_expr(ctx, self.current_procedure_id, port_variable_id, port_variable_type);
let runtime_call_arguments = vec![
case_index_expr_id.upcast(),
port_index_expr_id.upcast(),
port_variable_expr_id.upcast()
];
// Create runtime call, then store it
let runtime_call_expr_id = create_ast_call_expr(ctx, self.current_procedure_id, Method::SelectRegisterCasePort, &mut self.expression_buffer, runtime_call_arguments);
let runtime_call_stmt_id = create_ast_expression_stmt(ctx, runtime_call_expr_id.upcast());
transformed_stmts.push(runtime_call_stmt_id.upcast());
total_port_index += 1;
}
}
}
// Create the variable that will hold the result of a completed select
// block. Then create the runtime call that will produce this result
let select_variable_id = create_ast_variable(ctx, outer_scope_id);
let select_variable_type = TypeIdReference::DirectTypeId(ctx.arch.uint32_type_id);
locals.push((select_variable_id, select_variable_type));
{
let runtime_call_expr_id = create_ast_call_expr(ctx, self.current_procedure_id, Method::SelectWait, &mut self.expression_buffer, Vec::new());
let variable_stmt_id = create_ast_variable_declaration_stmt(ctx, self.current_procedure_id, select_variable_id, select_variable_type, runtime_call_expr_id.upcast());
transformed_stmts.push(variable_stmt_id.upcast().upcast());
}
call_id_section.forget();
expr_id_section.forget();
// Now we transform each of the select block case's guard and code into
// a chained if-else statement.
let relative_pos = transformed_stmts.len() as i32;
if total_num_cases > 0 {
let (if_stmt_id, end_if_stmt_id, scope_id) = transform_select_case_code(ctx, self.current_procedure_id, id, 0, select_variable_id, select_variable_type);
link_existing_child_to_new_parent_scope(ctx, &mut self.scope_buffer, outer_scope_id, scope_id, relative_pos);
let first_end_if_stmt = &mut ctx.heap[end_if_stmt_id];
first_end_if_stmt.next = outer_end_block_id.upcast();
let mut last_if_stmt_id = if_stmt_id;
let mut last_end_if_stmt_id = end_if_stmt_id;
let mut last_parent_scope_id = outer_scope_id;
let mut last_relative_pos = transformed_stmts.len() as i32 + 1;
transformed_stmts.push(last_if_stmt_id.upcast());
for case_index in 1..total_num_cases {
let (if_stmt_id, end_if_stmt_id, scope_id) = transform_select_case_code(ctx, self.current_procedure_id, id, case_index, select_variable_id, select_variable_type);
let false_case_scope_id = ctx.heap.alloc_scope(|this| Scope::new(this, ScopeAssociation::If(last_if_stmt_id, false)));
link_existing_child_to_new_parent_scope(ctx, &mut self.scope_buffer, false_case_scope_id, scope_id, 0);
link_new_child_to_existing_parent_scope(ctx, &mut self.scope_buffer, last_parent_scope_id, false_case_scope_id, last_relative_pos);
set_ast_if_statement_false_body(ctx, last_if_stmt_id, last_end_if_stmt_id, IfStatementCase{ body: if_stmt_id.upcast(), scope: false_case_scope_id });
let end_if_stmt = &mut ctx.heap[end_if_stmt_id];
end_if_stmt.next = last_end_if_stmt_id.upcast();
last_if_stmt_id = if_stmt_id;
last_end_if_stmt_id = end_if_stmt_id;
last_parent_scope_id = false_case_scope_id;
last_relative_pos = 0;
}
}
// Final steps: set the statements of the replacement block statement,
// link all of those statements together, and update the scopes.
let first_stmt_id = transformed_stmts[0];
let mut last_stmt_id = transformed_stmts[0];
for stmt_id in transformed_stmts.iter().skip(1).copied() {
set_ast_statement_next(ctx, last_stmt_id, stmt_id);
last_stmt_id = stmt_id;
}
if total_num_cases == 0 {
// If we don't have any cases, then we didn't connect the statements
// up to the end of the outer block, so do that here
set_ast_statement_next(ctx, last_stmt_id, outer_end_block_id.upcast());
}
let outer_block_stmt = &mut ctx.heap[outer_block_id];
outer_block_stmt.next = first_stmt_id;
outer_block_stmt.statements = transformed_stmts;
return Ok(())
}
}
// -----------------------------------------------------------------------------
// Utilities to create compiler-generated AST nodes
// -----------------------------------------------------------------------------
#[derive(Clone, Copy)]
enum TypeIdReference {
DirectTypeId(TypeId),
IndirectSameAsExpr(i32), // by type index
}
fn create_ast_variable(ctx: &mut Ctx, scope_id: ScopeId) -> VariableId {
let variable_id = ctx.heap.alloc_variable(|this| Variable{
this,
kind: VariableKind::Local,
parser_type: ParserType{
elements: Vec::new(),
full_span: InputSpan::new(),
},
identifier: Identifier::new_empty(InputSpan::new()),
relative_pos_in_parent: -1,
unique_id_in_scope: -1,
});
let scope = &mut ctx.heap[scope_id];
scope.variables.push(variable_id);
return variable_id;
}
fn create_ast_variable_expr(ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId, variable_id: VariableId, variable_type_id: TypeIdReference) -> VariableExpressionId {
let variable_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, variable_type_id);
return ctx.heap.alloc_variable_expression(|this| VariableExpression{
this,
identifier: Identifier::new_empty(InputSpan::new()),
declaration: Some(variable_id),
used_as_binding_target: false,
parent: ExpressionParent::None,
type_index: variable_type_index,
});
}
fn create_ast_call_expr(ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId, method: Method, buffer: &mut ScopedBuffer<ExpressionId>, arguments: Vec<ExpressionId>) -> CallExpressionId {
let call_type_id = match method {
Method::SelectStart => ctx.arch.void_type_id,
Method::SelectRegisterCasePort => ctx.arch.void_type_id,
Method::SelectWait => ctx.arch.uint32_type_id, // TODO: Not pretty, this. Pretty error prone
_ => unreachable!(), // if this goes of, add the appropriate method here.
};
let expression_ids = buffer.start_section_initialized(&arguments);
let call_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, TypeIdReference::DirectTypeId(call_type_id));
let call_expression_id = ctx.heap.alloc_call_expression(|this| CallExpression{
func_span: InputSpan::new(),
this,
full_span: InputSpan::new(),
parser_type: ParserType{
elements: Vec::new(),
full_span: InputSpan::new(),
},
method,
arguments,
procedure: ProcedureDefinitionId::new_invalid(),
parent: ExpressionParent::None,
type_index: call_type_index,
});
for argument_index in 0..expression_ids.len() {
let argument_id = expression_ids[argument_index];
let argument_expr = &mut ctx.heap[argument_id];
*argument_expr.parent_mut() = ExpressionParent::Expression(call_expression_id.upcast(), argument_index as u32);
}
return call_expression_id;
}
fn create_ast_literal_integer_expr(ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId, unsigned_value: u64, type_id: TypeId) -> LiteralExpressionId {
let literal_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, TypeIdReference::DirectTypeId(type_id));
return ctx.heap.alloc_literal_expression(|this| LiteralExpression{
this,
span: InputSpan::new(),
value: Literal::Integer(LiteralInteger{
unsigned_value,
negated: false,
}),
parent: ExpressionParent::None,
type_index: literal_type_index,
});
}
fn create_ast_equality_comparison_expr(
ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId,
variable_id: VariableId, variable_type: TypeIdReference, value: u64
) -> BinaryExpressionId {
let var_expr_id = create_ast_variable_expr(ctx, containing_procedure_id, variable_id, variable_type);
let int_expr_id = create_ast_literal_integer_expr(ctx, containing_procedure_id, value, ctx.arch.uint32_type_id);
let cmp_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, TypeIdReference::DirectTypeId(ctx.arch.bool_type_id));
let cmp_expr_id = ctx.heap.alloc_binary_expression(|this| BinaryExpression{
this,
operator_span: InputSpan::new(),
full_span: InputSpan::new(),
left: var_expr_id.upcast(),
operation: BinaryOperator::Equality,
right: int_expr_id.upcast(),
parent: ExpressionParent::None,
type_index: cmp_type_index,
});
let var_expr = &mut ctx.heap[var_expr_id];
var_expr.parent = ExpressionParent::Expression(cmp_expr_id.upcast(), 0);
let int_expr = &mut ctx.heap[int_expr_id];
int_expr.parent = ExpressionParent::Expression(cmp_expr_id.upcast(), 1);
return cmp_expr_id;
}
fn create_ast_expression_stmt(ctx: &mut Ctx, expression_id: ExpressionId) -> ExpressionStatementId {
let statement_id = ctx.heap.alloc_expression_statement(|this| ExpressionStatement{
this,
span: InputSpan::new(),
expression: expression_id,
next: StatementId::new_invalid(),
});
let expression = &mut ctx.heap[expression_id];
*expression.parent_mut() = ExpressionParent::ExpressionStmt(statement_id);
return statement_id;
}
fn create_ast_variable_declaration_stmt(
ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId,
variable_id: VariableId, variable_type: TypeIdReference, initial_value_expr_id: ExpressionId
) -> MemoryStatementId {
// Create the assignment expression, assigning the initial value to the variable
let variable_expr_id = create_ast_variable_expr(ctx, containing_procedure_id, variable_id, variable_type);
let void_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, TypeIdReference::DirectTypeId(ctx.arch.void_type_id));
let assignment_expr_id = ctx.heap.alloc_assignment_expression(|this| AssignmentExpression{
this,
operator_span: InputSpan::new(),
full_span: InputSpan::new(),
left: variable_expr_id.upcast(),
operation: AssignmentOperator::Set,
right: initial_value_expr_id,
parent: ExpressionParent::None,
type_index: void_type_index,
});
// Create the memory statement
let memory_stmt_id = ctx.heap.alloc_memory_statement(|this| MemoryStatement{
this,
span: InputSpan::new(),
variable: variable_id,
initial_expr: assignment_expr_id,
next: StatementId::new_invalid(),
});
// Set all parents which we can access
let variable_expr = &mut ctx.heap[variable_expr_id];
variable_expr.parent = ExpressionParent::Expression(assignment_expr_id.upcast(), 0);
let value_expr = &mut ctx.heap[initial_value_expr_id];
*value_expr.parent_mut() = ExpressionParent::Expression(assignment_expr_id.upcast(), 1);
let assignment_expr = &mut ctx.heap[assignment_expr_id];
assignment_expr.parent = ExpressionParent::Memory(memory_stmt_id);
return memory_stmt_id;
}
fn create_ast_block_stmt(ctx: &mut Ctx, statements: Vec<StatementId>) -> (BlockStatementId, EndBlockStatementId, ScopeId) {
let block_stmt_id = ctx.heap.alloc_block_statement(|this| BlockStatement{
this,
span: InputSpan::new(),
statements,
end_block: EndBlockStatementId::new_invalid(),
scope: ScopeId::new_invalid(),
next: StatementId::new_invalid(),
});
let end_block_stmt_id = ctx.heap.alloc_end_block_statement(|this| EndBlockStatement{
this,
start_block: block_stmt_id,
next: StatementId::new_invalid(),
});
let scope_id = ctx.heap.alloc_scope(|this| Scope::new(this, ScopeAssociation::Block(block_stmt_id)));
let block_stmt = &mut ctx.heap[block_stmt_id];
block_stmt.end_block = end_block_stmt_id;
block_stmt.scope = scope_id;
return (block_stmt_id, end_block_stmt_id, scope_id);
}
fn create_ast_if_stmt(ctx: &mut Ctx, condition_expression_id: ExpressionId, true_case: IfStatementCase, false_case: Option<IfStatementCase>) -> (IfStatementId, EndIfStatementId) {
// Create if statement and the end-if statement
let if_stmt_id = ctx.heap.alloc_if_statement(|this| IfStatement{
this,
span: InputSpan::new(),
test: condition_expression_id,
true_case,
false_case,
end_if: EndIfStatementId::new_invalid()
});
let end_if_stmt_id = ctx.heap.alloc_end_if_statement(|this| EndIfStatement{
this,
start_if: if_stmt_id,
next: StatementId::new_invalid(),
});
// Link the statements up as much as we can
let if_stmt = &mut ctx.heap[if_stmt_id];
if_stmt.end_if = end_if_stmt_id;
let condition_expr = &mut ctx.heap[condition_expression_id];
*condition_expr.parent_mut() = ExpressionParent::If(if_stmt_id);
return (if_stmt_id, end_if_stmt_id);
}
/// Sets the false body for a given
fn set_ast_if_statement_false_body(ctx: &mut Ctx, if_statement_id: IfStatementId, end_if_statement_id: EndIfStatementId, false_case: IfStatementCase) {
// Point if-statement to "false body"
let if_stmt = &mut ctx.heap[if_statement_id];
debug_assert!(if_stmt.false_case.is_none()); // simplifies logic, not necessary
if_stmt.false_case = Some(false_case);
// Point end of false body to the end of the if statement
set_ast_statement_next(ctx, false_case.body, end_if_statement_id.upcast());
}
/// Sets the specified AST statement's control flow such that it will be
/// followed by the target statement. This may seem obvious, but may imply that
/// a statement associated with, but different from, the source statement is
/// modified.
fn set_ast_statement_next(ctx: &mut Ctx, source_stmt_id: StatementId, target_stmt_id: StatementId) {
let source_stmt = &mut ctx.heap[source_stmt_id];
match source_stmt {
Statement::Block(stmt) => {
let end_id = stmt.end_block;
ctx.heap[end_id].next = target_stmt_id
},
Statement::EndBlock(stmt) => stmt.next = target_stmt_id,
Statement::Local(stmt) => {
match stmt {
LocalStatement::Memory(stmt) => stmt.next = target_stmt_id,
LocalStatement::Channel(stmt) => stmt.next = target_stmt_id,
}
},
Statement::Labeled(stmt) => {
let body_id = stmt.body;
set_ast_statement_next(ctx, body_id, target_stmt_id);
},
Statement::If(stmt) => {
let end_id = stmt.end_if;
ctx.heap[end_id].next = target_stmt_id;
},
Statement::EndIf(stmt) => stmt.next = target_stmt_id,
Statement::While(stmt) => {
let end_id = stmt.end_while;
ctx.heap[end_id].next = target_stmt_id;
},
Statement::EndWhile(stmt) => stmt.next = target_stmt_id,
Statement::Break(_stmt) => {},
Statement::Continue(_stmt) => {},
Statement::Synchronous(stmt) => {
let end_id = stmt.end_sync;
ctx.heap[end_id].next = target_stmt_id;
},
Statement::EndSynchronous(stmt) => {
stmt.next = target_stmt_id;
},
Statement::Fork(_) | Statement::EndFork(_) => {
todo!("remove fork from language");
},
Statement::Select(stmt) => {
let end_id = stmt.end_select;
ctx.heap[end_id].next = target_stmt_id;
},
Statement::EndSelect(stmt) => stmt.next = target_stmt_id,
Statement::Return(_stmt) => {},
Statement::Goto(_stmt) => {},
Statement::New(stmt) => stmt.next = target_stmt_id,
Statement::Expression(stmt) => stmt.next = target_stmt_id,
}
}
/// Links a new scope to an existing scope as its child.
fn link_new_child_to_existing_parent_scope(ctx: &mut Ctx, scope_buffer: &mut ScopedBuffer<ScopeId>, parent_scope_id: ScopeId, child_scope_id: ScopeId, relative_pos_hint: i32) {
let child_scope = &mut ctx.heap[child_scope_id];
debug_assert!(child_scope.parent.is_none());
child_scope.parent = Some(parent_scope_id);
child_scope.relative_pos_in_parent = relative_pos_hint;
add_child_scope_to_parent(ctx, scope_buffer, parent_scope_id, child_scope_id, relative_pos_hint);
}
/// Relinks an existing scope to a new scope as its child. Will also break the
/// link of the child scope's old parent.
fn link_existing_child_to_new_parent_scope(ctx: &mut Ctx, scope_buffer: &mut ScopedBuffer<ScopeId>, new_parent_scope_id: ScopeId, child_scope_id: ScopeId, new_relative_pos_in_parent: i32) {
let child_scope = &mut ctx.heap[child_scope_id];
let old_parent_scope_id = child_scope.parent.unwrap();
child_scope.parent = Some(new_parent_scope_id);
child_scope.relative_pos_in_parent = new_relative_pos_in_parent;
// Remove from old parent
let old_parent = &mut ctx.heap[old_parent_scope_id];
let scope_index = old_parent.nested.iter()
.position(|v| *v == child_scope_id)
.unwrap();
old_parent.nested.remove(scope_index);
// Add to new parent
add_child_scope_to_parent(ctx, scope_buffer, new_parent_scope_id, child_scope_id, new_relative_pos_in_parent);
}
/// Will add a child scope to a parent scope using the relative position hint.
fn add_child_scope_to_parent(ctx: &mut Ctx, scope_buffer: &mut ScopedBuffer<ScopeId>, parent_scope_id: ScopeId, child_scope_id: ScopeId, relative_pos_hint: i32) {
let parent_scope = &ctx.heap[parent_scope_id];
let existing_scope_ids = scope_buffer.start_section_initialized(&parent_scope.nested);
let mut insert_pos = existing_scope_ids.len();
for index in 0..existing_scope_ids.len() {
let existing_scope_id = existing_scope_ids[index];
let existing_scope = &ctx.heap[existing_scope_id];
if relative_pos_hint <= existing_scope.relative_pos_in_parent {
insert_pos = index;
break;
}
}
existing_scope_ids.forget();
let parent_scope = &mut ctx.heap[parent_scope_id];
parent_scope.nested.insert(insert_pos, child_scope_id);
}
fn add_new_procedure_expression_type(ctx: &mut Ctx, procedure_id: ProcedureDefinitionId, type_id: TypeIdReference) -> i32 {
let procedure = &mut ctx.heap[procedure_id];
let type_index = procedure.monomorphs[0].expr_info.len();
match type_id {
TypeIdReference::DirectTypeId(type_id) => {
for monomorph in procedure.monomorphs.iter_mut() {
debug_assert_eq!(monomorph.expr_info.len(), type_index);
monomorph.expr_info.push(ExpressionInfo{
type_id,
variant: ExpressionInfoVariant::Generic
});
}
},
TypeIdReference::IndirectSameAsExpr(source_type_index) => {
for monomorph in procedure.monomorphs.iter_mut() {
debug_assert_eq!(monomorph.expr_info.len(), type_index);
let copied_expr_info = monomorph.expr_info[source_type_index as usize];
monomorph.expr_info.push(copied_expr_info)
}
}
}
return type_index as i32;
}
|